Outubro 2014 vol. 1 num. 1 - 13th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials
Abstract - Open Access.
A Hierarchy in Partial Di_x000B_erential Equations on Material Modeling
Chan, Youn-Sha ; Paulino, Glaucio H. ;
Abstract:
Various elasticity theories including linear and nonlinear theories on material modeling are reviewed. In the case of linear theories, a structure of hierarchy in the governing partial di erential equations (PDEs) are observed. The structure of PDE hierarchy includes two sets of comparisons: (1) homogeneous materials versus nonhomogeneous materials, and (2) classical linear elasticity theory versus strain-gradient elasticity theory. We then found that crack problems can be used to simplify the formidable look of the governing PDEs. We also show that the fourth order PDE in the higher order strain-gradient elasticity theory converges to the second order PDE in classical linear elastic fracture mechanics (CLEFM). In the case of nonlinear theories, we observe that some nonlinear elasticity theory may not be applicable to formulate crack problems.
Abstract:
Palavras-chave: Functionally graded material, Strain-gradient elasticity, Linear elastic fracture mechanics, Partial di erential equation,
Palavras-chave:
Referências bibliográficas
- [1] Y.-S. Chan, G. H. Paulino, and A. C. Fannjiang. Change of constitutive relations due to interaction between strain-gradient effect and material gradation. Journal of Applied Mechanics, Transactions ASME, 73(5):871{875, 2006.
- [2] Y.-S. Chan, G. H. Paulino, and A. C. Fannjiang. Gradient elasticity theory for mode III fracture in functionally graded materials { Part II: crack parallel to the material gradation. Journal of Applied Mechanics, Transactions ASME, 75(6):061015 (11 pages), 2008.
- [3] F. Erdogan. Fracture mechanics of functionally graded materials. Composites Eng., 5(7):753{770, 1995.
- [4] G. Exadaktylos, I. Vardoulakis, and E. Aifantis. Cracks in gradient elastic bodies with surface energy. Int. J. Fract., 79(2):107{119, 1996.
- [5] N. Konda and F. Erdogan. The mixed mode crack problem in a nonhomogeneous elastic medium. Eng. Fract. Mech., 47(4):533{545, 1994.
- [6] G. H. Paulino, Y.-S. Chan, and A. C. Fannjiang. Gradient elasticity theory for mode III fracture in functionally graded materials {
- [7] Part I: crack perpendicular to the material gradation. J. Appl. Mech. Trans. ASME, 70(4):531{542, 2003.
- [8] 7. I. Vardoulakis, G. Exadaktylos, and E. Aifantis. Gradient elasticity with surface energy: Mode-III crack problem. Int. J. Solids Struct., 33(30):4531{4559, 1996.
Como citar:
Chan, Youn-Sha; Paulino, Glaucio H.; "A Hierarchy in Partial Di_x000B_erential Equations on Material Modeling", p. 50-53 . In: Proceedings of the 13th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials [=Blucher Material Science Proceedings, v.1, n.1].
São Paulo: Blucher,
2014.
ISSN 2358-9337,
últimos 30 dias | último ano | desde a publicação
downloads
visualizações
indexações