Full Article - Open Access.

Idioma principal

A STABLE GALERKIN REDUCED ORDER MODEL (ROM) FOR COMPRESSIBLE FLOW

Kalashnikova, I. ; Arunajatesan, S. ;

Full Article:

A method for constructing stable Proper Orthogonal Decomposition (POD)/Galerkin reduced order models (ROMs) for compressible flow is described. The proposed model reduction technique differs from the approach taken in many applications in that the Galerkin projection step is applied to the continuous system of partial differential equations (PDEs), rather than a semi-discrete representation of these equations. It is demonstrated that the inner product used to define the Galerkin projection is intimately tied to the stability of the resulting model. For linearized conservation laws such as the linearized compressible Euler and linearized compressible Navier-Stokes equations, a symmetry transformation leads to a stable formulation for the inner product. Preservation of stability for the discrete implementation of the Galerkin projection is made possible using piecewise-smooth finite element bases, and a weak enforcement of the boundary conditions. The stability and accuracy of the proposed model reduction approach is studied in the context of two test cases: the problem of an inviscid pressure pulse in a uniform base flow, and a viscous laminar cavity problem. For the second inherently non-linear test case, the non-linear dynamics of the flow are captured in the POD reduced basis modes, but not in the equations projected onto these modes, as the ROM equations are based on a local linearization of the full non-linear flow equations.

Full Article:

Palavras-chave: Reduced order model (ROM), proper orthogonal decomposition (POD)/Galerkin projection, compressible Navier-Stokes equations, energy method, numerical stability,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18407

Referências bibliográficas
  • [1] M.F. Barone, I. Kalashnikova, D.J. Segalman, H. Thornquist. Stable Galerkin Reduced Order Models for Linearized Compressible Flow. J. Comput. Phys. 288 1932–1946 (2009).
  • [2] M.F. Barone, I. Kalashnikova, M.R. Brake, D.J. Segalman. Reduced Order Modeling of Fluid/Structure Interaction. Sandia National Laboratories Report, SAND No. 2009-7189. Sandia National Laboratories, Albuquerque, NM (2009).
  • [3] M.F. Barone, D.J. Segalman, H.K. Thornquist, I. Kalashnikova. Galerkin Reduced Order Models for Compressible Flow with Structural Interaction, AIAA 46th Aerospace Science Meeting and Exhibit, AIAA 2008-0612, Reno, NV (2008).
  • [4] M. Gerritsen, P. Olsson. Designing an Efficient Solution Strategy for Fluid Flows: 1. A Stable High Order Finite Difference Scheme and Sharp Shock Resolution for the Euler Equations. J. Comput. Phys. 129 245–262 (1996).
  • [5] D. Funaro, D. Gottlieb. Convergence results for Pseudospectral Approximations of Hyperbolic Systems by a Penalty-Type Boundary Treatment,Math. of Comput. 57(196) 585-596 (1991).
  • [6] J.S. Hesthaven, D. Gottlieb. A Stable Method for the Compressible Navier-Stokes Equations: I. Open Boundary Conditions, SIAM J. Sci. Comput., 17(3) 579-612 (1996).
  • [7] A. Harten. On the symmetric form of systems of conservations laws with entropy. J. Comput. Phys. 49 151–164 (1983).
  • [8] I. Kalashnikova, M.F. Barone. On the Stability and Convergence of a Galerkin Reduced Order Model (ROM) of Compressible Flow with Solid Wall and Far-Field Boundary Treatment. Int. J. Numer. Meth. Engng. 83 1345–1375 (2010).
  • [9] M. Rathinam, L.R. Petzold. A New Look at Proper Orthogonal Decomposition, SIAM J. Numer. Anal. 41(5) 1893–1925 (2003).
  • [10] K. Kunisch, S. Volkwein. Galerkin Proper Orthogonal Decomposition for a General Equation in Fluid Dynamics, SIAM J. Numer. Anal., 40(2) 492–515 (2002).
  • [11] J.S. Hesthaven, D. Gottlieb. A stable penalty method for the compressible Navier-Stokes equations: I. Open boundary conditions. SIAM J. Sci. Comput. 17(3) 579–612 (1996).
  • [12] B. Gustafsson, A. Sundstrom. Incompletely parabolic problems in fluid dynamics. SIAM J. Appl. Math. 35(2) 343–357 (1978).
  • [13] L. Tourrette. Artificial boundary conditioners for the linearized Navier-Stokes equations. J. Comput. Phys. 137 1–37 (1997).
  • [14] J.L. Lumley. Stochastic Tools in Turbulence. New York, NY: Academic Press, 1971.
  • [15] P. Holmes, J.L. Lumley, G. Berkooz. Turbulence, Coherent Structures, Dynamical Systems and Symmetry, New York, NY: Cambridge University Press, 1996.
  • [16] T. Bui-Thanh, K. Willcox, O. Ghattas, and B. van Bloemen Waanders. Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comp. Phys., 224 880–896 (2007).
  • [17] J.A. Taylor. Dynamics of Large Scale Structures in Turbulent Shear Layers. Ph.D. thesis, Clarkson University (2001).
  • [18] T. Lieu, C. Farhat. Aerodynamic parameter adaptation of CFD-based reduced-order models. 45th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2007-328 (2007).
  • [19] D. Amsallem, C. Farhat. An interpolation method for adapting reduced-order models. AIAA J. 46(7) 1803–1813 (2008).
  • [20] D. Amsallem, J. Cortial, K. Carlberg, C. Farhat. A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Meth. Engng. 80 1241–1258 (2009).
  • [21] J.A. Taylor,M.N. Glauser. Towards practical flow sensing and control via POD and LSE based low-dimensional tools. J. Fluids Engng. 126(3) 337-345 (2003).
  • [22] A. LeGresley, J.J. Alonso. Investigation of non-linear projection for POD based reduced order models for aerodynamics. 39th AIAA Aeroscpace Sciences Meeting Andamp; Exhibit, AIAA Paper 2001-0926 (2001).
  • [23] T. Lieu, C. Farhat, M. Lesoinne. Reduced-order fluid/structure modeling of complete aircraft confirguration. Comput. Methods Appl. Mech. Engng. 195 5730–5742 (2006).
  • [24] L. Sirovich. Turbulence and the dynamics of coherent structures, Part III: Dynamics and scaling. Quarterly of Applied Mathematics 45(3) 583–590 (1987).
  • [25] N. Aubry, P. Holmes, J. Lumley, E. Stone. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid. Mech. 192 115–173 (1988).
  • [26] K. Veroy, A.T. Patera. Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Meth. Fluids 47 773–788 (2005).
  • [27] K. Willcox, J. Peraire. Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11) 2323–2330 (2002).
  • [28] C.W. Rowley. Model reduction for fluids, using blanaced proper orthogonal decomposition. Int. J. Bifurcation and Chaos 15(3) 997–1013 (2005).
  • [29] M. Ilak, C.W. Rowley. Reduced-order modeling of channel flow using traveling POD and balanced POD. 3rd AIAA Flow Control Conference, AIAA Paper 2006–3194 (2006).
  • [30] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43 9–44 (2002).
  • [31] Z. Bai, P.M. Dewilde, R.W. Freund. Reduced order modeling, in W.H.A. Schilders, E.J.W. ter Maten (Eds.), Numerical Handbook of Numerical Analysis, Vol. VIII, Elsevier, Amsterdam, pp. 825–895 (2005).
  • [32] F. Kwasniok. Empirical low-order models of barotropic flow. J. Atmos. Sci. 61(2) 235– 245 (2004).
  • [33] R. Everson. L. Sirovich. Karhunen-Loeve procedure for gappy data. J. Optical Society of America A 12(8) 1657–1664 (1995).
  • [34] S.K. Tiwary, R.A. Rutenbar. Faster, parametric trajectory-based macromodels via localized linear reductions. ICAAD 876–883 (2006).
  • [35] K. Carlberg, J. Cortial, D. Amsallem, M. Zahr, C. Farhat. The GNAT non-linear model reduction method and its application to fluid dynamics problems, 6th AIAA Theoretical Fluid Mechanics Conference, AIAA Paper 2011-3112 (2011).
  • [36] N.C. Nguyen, J. Peraire. An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. Int. J. Numer. Meth. Engng. 76 27–55 (2008).
  • [37] B. Gustafsson. High Order Difference Methods for Time Dependent PDE, Leipzig, Germany: Springer-Verlag, 2008.
  • [38] C.W. Rowley, T. Colonius, A.J. Basu. On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455 315–346 (2002).
  • [39] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B. Lehoucq, K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G. Salinger, H.K. Thornquist, R.S. Tuminaro, J.M. Willenbring, A. Williams, K.S. Stanley. An overview of the trilinos project. ACM Trans. Math. Softw. 31(3) (2005).
  • [40] B. Kirk, J.W. Peterson, R.H. Stogner, G.F. Carey. libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(34) 237-254 (2006).
  • [41] V. Sankaran, S. Menon. LES of Scalar Mixing in Supersonic Shear Layers, Proceedings of the Combustion Institute, 30(2) 2835–2842 (2004).
  • [42] L.S. Ukeiley, C. Kannepalli, S. Arunajatesan. Development of Low DimensionalModels for Control of Compressible Flow. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV (2002).
  • [43] F. Genin, S. Menon. Studies of Shock/Turbulent Shear Layer Interaction Using Large- Eddy Simulation. Computers and Fluids, 39 800–819 (2010).
  • [44] F. Genin, S. Menon. Dynamics of Sonic Jet Injection into Supersonic Crossflow. J. Turbulence 11(4) 1–30 (2010).
Como citar:

Kalashnikova, I.; Arunajatesan, S.; "A STABLE GALERKIN REDUCED ORDER MODEL (ROM) FOR COMPRESSIBLE FLOW", p. 1399-1423 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18407

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações