Completo - Open Access.

Idioma principal | Segundo idioma

ANALYSIS OF MACHINE LEARNING AS A VIABLE TOOL FOR SUSTAINABLE DEVELOPMENT: A BIBLIOMETRIC REVIEW

ANALYSIS OF MACHINE LEARNING AS A VIABLE TOOL FOR SUSTAINABLE DEVELOPMENT: A BIBLIOMETRIC REVIEW

CERQUEIRA, RONEY DAS MERCÊS ; Calil Junior, Marcos Antônio ; Aleluia, Jorge Lucas Gonçalves ;

Completo:

"The objective of this work was to develop a bibliometric review on algorithms based on Machine Learning as a viable tool for Sustainable Development. The proposed methodology analyzed articles published between 2014 and 2024, from the SCOPUS database. 994 articles were subjected to a General Analysis and 46 to a Specific Analysis, pointing to China and India as the countries that publish the most and Artificial Neural Networks as the most used algorithm. The conclusion reveals a rigorous and comprehensive approach, as the analyses focus on technical evaluation based on relevance, quality and pertinence."

Completo:

"The objective of this work was to develop a bibliometric review on algorithms based on Machine Learning as a viable tool for Sustainable Development. The proposed methodology analyzed articles published between 2014 and 2024, from the SCOPUS database. 994 articles were subjected to a General Analysis and 46 to a Specific Analysis, pointing to China and India as the countries that publish the most and Artificial Neural Networks as the most used algorithm. The conclusion reveals a rigorous and comprehensive approach, as the analyses focus on technical evaluation based on relevance, quality and pertinence."

Palavras-chave: Bibliometric Review, Machine Learning, Sustainable Development,

Palavras-chave: Bibliometric Review, Machine Learning, Sustainable Development,

DOI: 10.5151/siintec2024-393281

Referências bibliográficas
  • [1] "1 MINH, D. et al. Explainable artificial intelligence: a comprehensive review. Artificial
  • [2] Intelligence Review, v. 55, n. 5, p. 3503–3568, 202
  • [3] 2 TURING, A. M. Computing Machinery and Intelligence. Mind, New Series, v. 59, n. 236, p.
  • [4] 433–460, 1950.
  • [5] 3 WEISS, S. M.; KULIKOWSKI, C. A. Computer systems that learn: classification and
  • [6] prediction methods from statistics, neural nets, machine learning, and expert systems.
  • [7] Nachdr.ed. San Mateo, Calif: Morgan Kaufman Publ, 1994.
  • [8] 4 SUFI, F. K. AI-GlobalEvents: A Software for analyzing, identifying and explaining global
  • [9] events with Artificial Intelligence. Software Impacts, v. 11, p. 100218, 2022.
  • [10] 5 WANG, L. et al. Voice‐based AI in call center customer service: A natural field experiment.
  • [11] Production and Operations Management, v. 32, n. 4, p. 1002–1018, 2023.
  • [12] 6 BURRELL, D. N. Dynamic Evaluation Approaches to Telehealth Technologies and Artificial
  • [13] Intelligence (AI) Telemedicine Applications in Healthcare and Biotechnology Organizations.
  • [14] Merits, v. 3, n. 4, p. 700–721, 2023.
  • [15] 7 RIETSCHE, R. et al. Quantum Computing. Electronic Markets, v. 32, n. 4, p. 2525–2536,
  • [16] 2022.
  • [17] 8 SACHA, G. M.; VARONA, P. Artificial intelligence in nanotechnology. Nanotechnology, v.
  • [18] 24, n. 45, p. 452002, 2013.
  • [19] 9 WALKER, A. Business Process Architecture for the Integration of Artificial Intelligence at
  • [20] Aerospace Organizations. International Journal of Aviation, Aeronautics, and Aerospace, v. 10, n. 4, 2023. Disponível em: . Acesso em:
  • [21] 13 Apr. 2024.
  • [22] 10 CERQUEIRA, R. M.; SISNANDO, A. D.; ESQUERRE, V. F. R. Metamaterial Waveguide
  • [23] Modelling by an Artificial Neural Network with Genetic Algorithm. In: FRONTIERS IN OPTICS,
  • [24] 2021, Washington, DC. Frontiers in Optics + Laser Science 2021. Washington, DC: Optica
  • [25] Publishing Group, 2021. p. JTh5A.141. Disponível em:
  • [26] . Acesso em: 18 Mar. 2024.
  • [27] 11 GOMES, J. M. D. S. et al. Deforestation of Brazilian Amazonia: Temporal Analysis and
  • [28] Mitigation Proposals. Revista de Gestão Social e Ambiental, v. 18, n. 4, p. e04693, 2024.
  • [29] 12 SUN, L. et al. Deforestation embodied in global trade: Integrating environmental extended
  • [30] input-output method and complex network analysis. Journal of Environmental Management,
  • [31] v. 325, p. 116479, 2023.
  • [32] 13 MARQUES, L. O Antropoceno como aceleração do aquecimento global. Liinc em Revista,
  • [33] v. 18, n. 1, p. e5968, 2022.
  • [34] 14 DELLAMATRICE, P. M.; MONTEIRO, R. T. R. Principais aspectos da poluição de rios
  • [35] brasileiros por pesticidas. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, n.
  • [36] 12, p. 1296–1301, 2014.
  • [37] 15 GUIMARÃES, R. G.; JUNIOR, J. L.; NETO, A. J. D. S. Revisão sistemática do transporte de
  • [38] microplástico do continente para o oceano. Boletim do Observatório Ambiental Alberto
  • [39] Ribeiro Lamego, v. 14, n. 1, p. 18–39, 2020.
  • [40] 16 LIMA, H. C. G. et al. O Impacto do Uso de Agrotóxico na Agricultura e os Problemas de
  • [41] Saúde Pública: uma Revisão. Brazilian Journal of Implantology and Health Sciences, v.
  • [42] 5, n. 5, p. 1491–1500, 2023.
  • [43] 17 UNITED NATIONS. The 2030 Agenda and the Sustainable Development Goals an
  • [44] opportunity for Latin America and the Caribbean. Santiago: United Nations, ECLAC, 2018.
  • [45] 18 COSTA E SILVA, M. D. V. et al. Contribuição da Inteligência Artificial no Desenvolvimento
  • [46] de Energias Renováveis: Uma Revisão Bibliométrica de Literatura. International Journal of
  • [47] Environmental Resilience Research and Science, v. 4, n. 3, p. 1–20, 2022.
  • [48] 19 CERQUEIRA, R. D. M. et al. Engenharia de Energias da UFRB: estudos e aplicação.
  • [49] RNA Aplicadas a Energia Solar. Cruz das Almas, BA: Editora UFRB, 2021. v. 1, n. 1, p. 53-
  • [50] 70. Disponível em: Access in: 07 Jul. 2024.
  • [51] 20 GUO, Y. et al. Application and Implementation of Artificial Intelligence Technology for
  • [52] Intelligent Vehicle. Journal of Physics: Conference Series, v. 2508, n. 1, p. 012049, 2023.
  • [53] 21 DE FREITAS, H. F. S. et al. Modelagem de uma Célula de Eletrólise Microbiana (Cem) por
  • [54] Meio de Redes Neurais Artificiais (RNA) Via um Algoritmo Meta-Heurístico. Revista Brasileira
  • [55] de Energias Renováveis, v. 7, n. 3, 2018. Disponível em:
  • [56] . Acesso em: 14 Apr. 2024.
  • [57] 22 BORBA, M. D. C. et al. Gestão no meio agrícola com o apoio da Inteligência Artificial: uma
  • [58] análise da digitalização da agricultura. Revista em Agronegócio e Meio Ambiente, v. 15, n.
  • [59] 3, p. 1–22, 2022.
  • [60] 23 ZHANG, Lefei; ZHANG, Liangpei. Artificial Intelligence for Remote Sensing Data Analysis:
  • [61] A review of challenges and opportunities. IEEE Geoscience and Remote Sensing
  • [62] Magazine, v. 10, n. 2, p. 270–294, 2022.
  • [63] 24 ARAÚJO, C. A. Bibliometria: evolução histórica e questões atuais. Em Questão, v. 12, n.
  • [64] 1, p. 11–32, 2006. "
Como citar:

CERQUEIRA, RONEY DAS MERCÊS; Calil Junior, Marcos Antônio; Aleluia, Jorge Lucas Gonçalves; "ANALYSIS OF MACHINE LEARNING AS A VIABLE TOOL FOR SUSTAINABLE DEVELOPMENT: A BIBLIOMETRIC REVIEW", p. 929-936 . In: . São Paulo: Blucher, 2024.
ISSN 2357-7592, DOI 10.5151/siintec2024-393281

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações