Dezembro 2024 vol. 11 num. 2 - X Simpósio Internacional de Inovação e Tecnologia
Full Article - Open Access.
Analysis of Machine Learning Techniques for Information Reconciliation in CV-QKD Systems: Challenges in Practical Scenarios
Analysis of Machine Learning Techniques for Information Reconciliation in CV-QKD Systems: Challenges in Practical Scenarios
Nooblath Neto, Mauro Queiroz ; Ferreira Neto, Nelson Alves ;
Full Article:
"This paper reviews the challenges associated with implementing InformationReconciliation (IR) techniques in Continuous Variable Quantum Key Distribution (CVQKD) systems, focusing on integrating Machine Learning techniques and embeddedtechnologies such as Field-Programmable Gate Arrays (FPGAs). While CV-QKDsystems are compatible with existing telecommunications infrastructure and capableof high key generation rates, they face significant computational challenges in longdistance communication due to large decoding matrices. This study explores machinelearning approaches to reduce computational complexity and improve post-keyprocessing times, aiming to identify challenges and gaps that can guide future researchin enhancing the efficiency of CV-QKD systems."
Full Article:
"This paper reviews the challenges associated with implementing InformationReconciliation (IR) techniques in Continuous Variable Quantum Key Distribution (CVQKD) systems, focusing on integrating Machine Learning techniques and embeddedtechnologies such as Field-Programmable Gate Arrays (FPGAs). While CV-QKDsystems are compatible with existing telecommunications infrastructure and capableof high key generation rates, they face significant computational challenges in longdistance communication due to large decoding matrices. This study explores machinelearning approaches to reduce computational complexity and improve post-keyprocessing times, aiming to identify challenges and gaps that can guide future researchin enhancing the efficiency of CV-QKD systems."
Palavras-chave: CV-QKD, Field-Programmable Gate Array, Information Reconciliation, Deep Learning,
Palavras-chave: CV-QKD, Field-Programmable Gate Array, Information Reconciliation, Deep Learning,
DOI: 10.5151/siintec2024-393504
Referências bibliográficas
- [1] " Y. Zhang, Y. Bian, Zhengyu Li, S. Yu e H. Guo, “Continuous-variable quantum key
- [2] distribution system: past, present, and,” Applied Physics Reviews, 27 March 2024.
- [3] [2] C. W. X. Z. Y. Z. Z. Y. S. &. G. H. Zhou, “Continuous-Variable Quantum Key
- [4] Distribution with Rateless Reconciliation Protocol,” Physical Review Applied, 2019.
- [5] [3] S. A. U. B. L. B. M. B. D. C. R. E. D. G. T. L. C. O. C. P. J. R. M. S. J. T. M. U. V. V. G.
- [6] V. P. &. W. P. Pirandola, “Advances in Quantum Cryptography,” Quantum Physics, 2019.
- [7] [4] T. K. Moon, Error Correction Coding, Utah: John Wiley and Sons, Inc., 2021.
- [8] [5] R. Palazzo, C. José, J. Geronimo, A. Aparecido, O. Milare, M. da costa, T. Pires e G.
- [9] Oliveira, Fundamentos Algébricos e Geométricos dos Códigos Corretores de Erros, Campinas,
- [10] 2006.
- [11] [6] Y. B. A. C. Ian Goodfellow, Deep Learning, Cambridge: MA: MIT Press, 2016.
- [12] [7] J. Li, Y. Guo, X. Wang e C. Xie, “Discrete-modulated continuous-variable quantum key
- [13] distribution with a machine-learning-based detector,” Optical Engineering, June 2018.
- [14] [8] J. Xie, L. Zhang, Y. Wang e D. Huang, “Deep Neural Network Based Reconciliation for
- [15] CV-QKD,” Photonics, 15 February 2022.
- [16] [9] N. Long, R. Malaney e K. Grant, “A Survey of Machine Learning Assisted ContinuousVariable,” Information, 10 October 2023.
- [17] [10] C. C. G. a. P. L. Knight, Introductory Quantum Optics, New York: Cambridge University
- [18] Press, 2004.
- [19] [11] J. X. a. L. Z. a. Y. a. D. Huang, “Deep Neural Network Based Reconciliation for CVQKD,” Photonics, 14 Fevereiro 2022. "
Como citar:
Nooblath Neto, Mauro Queiroz; Ferreira Neto, Nelson Alves; "Analysis of Machine Learning Techniques for Information Reconciliation in CV-QKD Systems: Challenges in Practical Scenarios", p. 1113-1120 . In: .
São Paulo: Blucher,
2024.
ISSN 2357-7592,
DOI 10.5151/siintec2024-393504
últimos 30 dias | último ano | desde a publicação
downloads
visualizações
indexações