Artigo completo - Open Access.

Idioma principal | Segundo idioma

Análise do poço a roda das emissões de gases do efeito estufa em veículo elétricos- revisão crítica

Well-to-Wheel analysis of GHG emissions in electric vehicles - critical review

Sinigaglia, Tiago ; Martins, Mario Eduardo Santos ;

Artigo completo:

A crescente preocupação ambiental tem levado a busca por novos sistemas de energia e trem-de-força.Os veículos elétricos (EVs) estão surgindo como uma alternativa promissora e sustentável.Os EVs são divididos entre veículo elétrico híbrido, veículo elétri

Artigo completo:

The growing environmental concern has led to the search for new energy and powertrain systems. Electric vehicles (EVs) are emerging as a promising and sustainable alternative. EVs are divided between Hybrid Electric Vehicles (HEV), Battery Electric Vehicl

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2021-PAP68

Referências bibliográficas
  • [1] EUROSTAT. Glossary:Greenhouse gas (GHG) - Statistics Explained 2020.
  • [2] https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Glossary:Greenhouse_gas
  • [3] _(GHG) (accessed May 12, 2020).
  • [4] [2] US EPA O. Overview of Greenhouse Gases. US EPA 2015. https://www.epa.gov/ghgemissions/overviewgreenhouse-gases (accessed May 11, 2020).
  • [5] [3] Center for Climate and Energy Solutions. Global Emissions. Center for Climate and Energy Solutions 2020. https://www.c2es.org/content/internationalemissions/(accessed May 12, 2020).
  • [6] [4] Government of Canada. Greenhouse gas sources and sinks: executive summary 2019. Aem 2019.
  • [7] https://www.canada.ca/en/environment-climatechange/services/climate-change/greenhouse-gasemissions/sources-sinks-executive-summary-2019.html (accessed May 12, 2020).
  • [8] [5] Ge M, Friedrich J. 4 gráficos para entender as emissões de gases de efeito estufa por país e por setor WRI Brasil 2020.
  • [9] https://wribrasil.org.br/pt/blog/2020/02/quatrograficos-explicam-emissoes-de-gases-de-efeitoestufa-por-pais-e-por-setor#fn:1 (accessed May 12,2020).
  • [10] [6] Agência Brasil. Efeito estufa: transporte responde por 25% das emissões globais. Agência Brasil 2018. https://agenciabrasil.ebc.com.br/geral/noticia/2018-12/efeito-estufa-transporte-responde-por-25-dasemissoes-globais (accessed May 12, 2020).
  • [11] [7] Canals Casals L, Martinez-Laserna E, Amante García B, Nieto N. Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction. Journal of Cleaner Production 2016;127:425–37. https://doi.org/10.1016/j.jclepro.2016.03.120.
  • [12] [8] Kimura K, Kudo Y, Sato A. Techno-Economic Analysis of Solar Hybrid Vehicles Part 1: Analysis of Solar Hybrid Vehicle Potential Considering Well-to-Wheel GHG Emissions, 2016, p. 2016-01–1287. https://doi.org/10.4271/2016-01-1287.
  • [13] [9] Liu X, Reddi K, Elgowainy A, Lohse-Busch H, Wang M, Rustagi N. Comparison of well-to-wheels
  • [14] energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasolinepowered internal combustion engine vehicle. International Journal of Hydrogen Energy
  • [15] 2020;45:972–83. https://doi.org/10.1016/j.ijhydene.2019.10.192.
  • [16] [10] Choi W, Yoo E, Seol E, Kim M, Song HH. Greenhouse gas emissions of conventional and
  • [17] alternative vehicles: Predictions based on energy policy analysis in South Korea. Applied Energy 2020;265:114754. https://doi.org/10.1016/j.apenergy.2020.114754.
  • [18] [11] Yoo E, Kim M, Song HH. Well-to-wheel analysis of hydrogen fuel-cell electric vehicle in Korea. International Journal of Hydrogen Energy 2018;43:19267–78. https://doi.org/10.1016/j.ijhydene.2008.088.
  • [19] [12] Curran SJ, Wagner RM, Graves RL, Keller M, Green JB. Well-to-wheel analysis of direct and indirect use of natural gas in passenger vehicles. Energy 2014;75:194–203.
  • [20] https://doi.org/10.1016/j.energy.2014.07.035.
  • [21] [13] Kromer MA, Heywood JB. A Comparative Assessment of Electric Propulsion Systems in the
  • [22] 2030 US Light-Duty Vehicle Fleet. SAE Int J Engines 2008;1:372–91.
  • [23] https://doi.org/10.4271/2008-01-0459.
  • [24] [14] Petrauskienė K, Skvarnavičiūtė M, Dvarionienė J. Comparative environmental life cycle assessment of electric and conventional vehicles in Lithuania. Journal of Cleaner Production 2020;246:119042. https://doi.org/10.1016/j.jclepro.2019.119042.
  • [25] [15] Patil V, Shastry V, Himabindu M, Ravikrishna RV. Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2 – Wellto-
  • [26] wheels analysis. Energy 2016;96:699–712. https://doi.org/10.1016/j.energy.2015.11.076.
  • [27] [16] Lu J, Li L, Jin-Bum, Yang-Kook, Wu F, Amine K. Aprotic and Aqueous Li–O2 Batteries. Chem Rev 2014;11:5611–40. https://doi.org/10.1021/cr400573b.
  • [28] [17] Alvarez RA, Pacala SW, Winebrake JJ, Chameides WL, Hamburg SP. Greater focus needed on methane leakage from natural gas infrastructure. PNAS 2012;109:6435–40.
  • [29] https://doi.org/10.1073/pnas.1202407109.
  • [30] [18] Thomas CE. Fuel cell and battery electric vehicles compared. International Journal of Hydrogen Energy 2009;34:6005–20. https://doi.org/10.1016/j.ijhydene.2009.06.003.
  • [31] [19] Hawkins TR, Gausen OM, Strømman AH. Environmental impacts of hybrid and electric
  • [32] vehicles—a review. Int J Life Cycle Assess 2012;17:997–1014. https://doi.org/10.1007/s11367-
  • [33] 012-0440-9.
  • [34] [20] Faria R, Moura P, Delgado J, de Almeida AT. A sustainability assessment of electric vehicles as a personal mobility system. Energy Conversion and Management 2012;61:19–30.
  • [35] https://doi.org/10.1016/j.enconman.2012.02.023.
  • [36] [21] Meinrenken A links open overlay panelChristoph J, Lackner KS. Fleet view of electrified transportation reveals smaller potential to reduce GHG emissions. Applied Energy 2015;138:393–403. https://doi.org/10.1016/j.apenergy.2014.10.082.
  • [37] [22] Plötz P, Funke SÁ, Jochem P. The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles. Transportation Research Part A: Policy and Practice 2018;118:331–40. https://doi.org/10.1016/j.tra.2018.09.018.
  • [38] [23] Woo J, Choi H, Ahn J. Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: A global perspective. Transportation Research Part D: Transport and Environment 2017;51:340–50. https://doi.org/10.1016/j.trd.2017.01.005.
  • [39] [24] Shen W, Han W, Chock D, Chai Q, Zhang A. Wellto-wheels life-cycle analysis of alternative fuels and vehicle technologies in China. Energy Policy 2012;49:296–307.
  • [40] https://doi.org/10.1016/j.enpol.2012.06.038.
  • [41] [25] Wu Y, Zhang L. Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transportation Research Part D: Transport and Environment 2017;51:129–45. https://doi.org/10.1016/j.trd.2016.12.007.
  • [42] [26] Yazdanie M, Noembrini F, Heinen S, Espinel A, Boulouchos K. Well-to-wheel costs, primary energy demand, and greenhouse gas emissions for the production and operation of conventional and alternative vehicles. Transportation Research Part D: Transport and Environment 2016;48:63–84. https://doi.org/10.1016/j.trd.2016.08.002.
  • [43] [27] Kamiya G, Axsen J, Crawford C. Modeling the GHG emissions intensity of plug-in electric vehicles using short-term and long-term perspectives. Transportation Research Part D: Transport and Environment 2019;69:209–23. https://doi.org/10.1016/j.trd.2019.01.027.[28] Moro A, Lonza L. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transportation Research Part D: Transport and Environment 2018;64:5–14.
  • [44] https://doi.org/10.1016/j.trd.2017.07.012.
  • [45] [29] Li M, Zhang X, Li G. A comparative assessment of battery and fuel cell electric vehicles using a well-towheel analysis. Energy 2016;94:693–704. https://doi.org/10.1016/j.energy.2015.11.023.
  • [46] [30] Faria R, Marques P, Moura P, Freire F, Delgado J, de Almeida AT. Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles. Renewable and Sustainable Energy Reviews 2013;24:271–87. https://doi.org/10.1016/j.rser.2013.03.063.
  • [47] [31] Ramachandran S, Stimming U. Well to wheel analysis of low carbon alternatives for road traffic. Energy Environ Sci 2015;8:3313–24. https://doi.org/10.1039/C5EE01512J.
  • [48] [32] Athanasopoulou L, Bikas H, Stavropoulos P. Comparative Well-to-Wheel Emissions Assessment
  • [49] of Internal Combustion Engine and Battery Electric Vehicles. Procedia CIRP 2018;78:25–30.
  • [50] https://doi.org/10.1016/j.procir.2018.08.169.
  • [51] [33] Skrúcaný T, Kendra M, Stopka O, Milojević S, Figlus T, Csiszár C. Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries. Sustainability 2019;11:4948. https://doi.org/10.3390/su11184948.
  • [52] [34] Qiao Q, Zhao F, Liu Z, He X, Hao H. Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle.Energy 2019;177:222–33.
  • [53] https://doi.org/10.1016/j.energy.2019.04.080.
  • [54] [35] Shen W, Han W, Wallington TJ, Winkler SL. China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles. Environ Sci Technol 2019;53:6063–72. https://doi.org/10.1021/acs.est.8b05264.
  • [55] [36] Zheng Y, He X, Wang H, Wang M, Zhang S, Ma D, et al. Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China. Mitig Adapt Strateg Glob Change 2019. https://doi.org/10.1007/s11027-019-09890-5.
  • [56] [37] Helmers E, Marx P. Electric cars: technical characteristics and environmental impacts. Environ Sci Eur 2012;24:14. https://doi.org/10.1186/2190-4715-24-14.
  • [57] [38] Roy P, Motiani M, Dewani PP. Are We Set for Electric Cars? Questioning the Environmental
  • [58] Readiness of India. SSRN Journal 2014. https://doi.org/10.2139/ssrn.2429478.
Como citar:

Sinigaglia, Tiago; Martins, Mario Eduardo Santos; "Análise do poço a roda das emissões de gases do efeito estufa em veículo elétricos- revisão crítica", p. 287-294 . In: Anais do XXVIII SIMPÓSIO INTERNACIONAL DE ENGENHARIA AUTOMOTIVA. São Paulo: Blucher, 2021.
ISSN 2357-7592, DOI 10.5151/simea2021-PAP68

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações