Artigo - Open Access.

Idioma principal | Segundo idioma

Aplicação de Chalconas e Análogos com Aditivos Antioxidantes em Misturas de Diesel e Biodiesel

A Trimethoxy-Chalcone Applied as Antioxidant and Antibacterial Additive for Diesel and Biodiesel Blend

FARIA, EDUARDO ; OLIVEIRA, ALINE ; DUARTE, VITOR ; NAPOLITANO, HAMILTON ; CAVALCANTI, EDUARDO ;

Artigo:

Os combustíveis fósseis são precursores de uma grande parcela das emissões de gases poluentes na atmosfera. Desse modo, existe uma demanda crescente por fontes energéticas renováveis e menos poluentes. O biodiesel representa uma alternativa promissora à diversificação das matrizes energéticas brasiliera e mundial bem como para a redução dos impactos ambientais dos motores a combustão interna. Entretanto, o uso do biocombustível pode gerar alguns problemas técnicos associados à sua menor estabilidade e maior suscetibilidade à degradação em relação ao diesel de petróleo. Como alternativa aos problemas citados, aditivos são aplicados para manutenção das propriedades físico-químicas do biodiesel e suas misturas com diesel mineral, durante operações de armazenamento e transporte. Este trabalho contempla a análise estrutural, energética e reacional de moléculas de chalconas com potencial aplicação como aditivos para misturas diesel/biodiesel. Testes de estabilidade de diesel S10 B11 com a chalcona C18H18O4, durante o armazenamento por 140 dias, indicaram um aumento de até 7% do tempo de estabilidade à oxidaçao ecelerada pelo método de Rancimat modificado. As chalconas C23H17ClO3 e C23H17O3 apresentaram potencial antioxidante e densidade energética até 30% maior que o diesel.

Artigo:

The fossil fuels are precursors of a large share of pollutant gas emissions into the atmosphere. Thus, there is a growing demand for renewable and less polluting energy sources. The biodiesel represents a promising alternative for the diversification of Brazilian and global energy matrices as well as for reducing the environmental impacts of internal combustion engines. However, the use of biofuel can generate some technical problems associated with its lower stability and greater susceptibility to degradation in relation to petroleum diesel. As an alternative to the aforementioned problems, additives are applied to maintain the physicochemical properties of biodiesel and its blends with mineral diesel, during storage and transport operations. This work includes the structural, energetic and reactional analysis of chalcones molecules with potential application as additives for diesel/biodiesel blends. Stability tests of S10 B11 with chalcone C18H18O4, during storage for 140 days, indicated an increase of up 7% in the accelerated oxidation stability time by the modifified Rancimat method. The chalcones C23H17ClO3 and C23H17O3 showed antioxidant potential and energy density up to 30% higher than diesel.

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2022-PAP48

Referências bibliográficas
  • [1] J. Pedrosa and R. Corgosinho, “A indústria automobilística e o princípio da sustentabilidade: a natureza do discurso apropriado,” Ciências Gerenciais em foco, vol. 10, no. 7, pp. 105–133, 2019.
  • [2] H. Jeswani, A. Chilvers, and A. Azapagic, “Environmental sustainability of biofuels: a review,” Proc. R. Soc. A, vol. 476, no. 2243, 2020, doi: https://doi.org/10.1098/rspa.2020.0351.
  • [3] R. Alizadeh, P. D. Lund, and L. Soltanisehat, “Outlook on biofuels in future studies: A systematic literature review,” Renew. Sustain. Energy Rev., vol. 134, p. 110326, 2020, doi: 10.1016/j.rser.2020.110326.
  • [4] S. Puricelli, G. Cardellini, S. Casadei, D. Faedo, A. Oever, and M. Grosso, “A review on biofuels for light-duty vehicles in Europe,” Renew. Sustain. Energy Rev., vol. 137, p. 110398, 2021, doi: https://doi.org/10.1016/j.rser.2020.110398.
  • [5] “Frota de Veículos - 2022,” Fevereiro - 2022, 2022. [Online]. Available: https://www.gov.br/infraestrutura/pt-br/assuntos/transito/conteudo-denatran/frota-de-veiculos-2022. [Accessed: 11-May-2022].
  • [6] A. de Araújo and E. de Oliveira, “Análise do consumo de combustíveis do setor de transporte rodoviário no Brasil,” Rev. Estud. Debate, vol. 27, no. 3, pp. 143–157, 2020, doi: http://dx.doi.org/10.22410/issn.1983-036X.v27i3a2020.2528.
  • [7] C. Ribeiro and M. da Cunha, “The economic and environmental impacts of Brazilian National Biofuel Policy,” Biofuels, Bioprod. Biorefining, vol. 16, no. 2, pp. 413–434, 2022, doi: https://doi.org/10.1002/bbb.2326.
  • [8] S. Zivkovic and M. Veljkovic, “Environmental impacts the of production and use of biodiesel,” Environ. Sci. Pollut. Res., vol. 25, pp. 191–199, 2018, doi: doi:10.1007/s11356-017-0649-z.
  • [9] S. Alves, F. Dutra-Pereira, and T. Bicudo, “Influence of stainless steel corrosion on biodiesel oxidative stability during storage,” Fuel, vol. 249, pp. 73–79, 2019, doi: https://doi.org/10.1016/j.fuel.20103.097.
  • [10] Z. Liu, F. Li, W. Wang, and B. Wang, “Impact of different levels of biodiesel oxidation on its emission characteristics,” J. Energy Inst., vol. 92, no. 4, pp. 861–870, 2019, doi: https://doi.org/1016/j.joei.2018.06.012.
  • [11] H. Sutanto, B. Susanto, and M. Nasikin, “Solubility and Antioxidant Potential of a Pyrogallol Derivative for Biodiesel Additive,” Molecules, vol. 24, no. 13, p. 2439, 2019, doi: https://doi.org/10.3390/molecules24132439.
  • [12] K. Varatharajan and D. Pushparani, “Screening of antioxidant additives for biodiesel fuels,” Renew. Sustain. Energy Rev., vol. 82, pp. 2017–2028, 2018, doi: https://doi.org/10.1016/j.rser.2017.07.020.
  • [13] F. Vaz, “Bactérias Degradadoras de Biodiesel, Diesel e Misturas em Tanques de Armazenamento,” Universidade Federal de Goiás, 2010.
  • [14] B. Moser, “Efficacy of gossypol as an antioxidant additive in biodiesel,” Renew. Energy, vol. 40, no. 1, pp. 65–70, 2012, doi: https://doi.org/10.1016/j.renene.2011.09.022.
  • [15] S. Jain, S. Purohit, D. Kumar, and V. Goud, “Passion fruit seed extract as an antioxidant additive for biodiesel; shelf life and consumption kinetics,” Fuel, vol. 289, p. 119906, 2021, doi: https://doi.org/10.1016/j.fuel.2020.119906.
  • [16] H. Hosseinzadeh-Bandbafha et al., “Biodiesel antioxidants and their impact on the behavior of diesel engines: A comprehensive review,” Fuel Process. Technol., vol. 232, p. 107264, 2022, doi: https://doi.org/10.1016/j.fuproc.2022.107264.
  • [17] C. Santos and A. Silva, “The Antioxidant Activity of Prenylflavonoids,” Molecules, vol. 25, no. 3, p. 696, 2020, doi: https://doi.org/10.3390/molecules25030696.
  • [18] N. Zahrani, R. El-Shishtawy, M. Elaasser, and A. Asiri, “Synthesis of Novel Chalcone-Based Phenothiazine Derivatives as Antioxidant and Anticancer Agents,” Molecules, vol. 25, no. 19, p. 4566, 2020, doi: https://doi.org/10.3390/molecules25194566.
  • [19] A. Rammohan, J. S. Reddy, G. Sravya, C. N. Rao, and G. V. Zyryanov, “Chalcone synthesis, properties and medicinal applications: a review,” Environ. Chem. Lett., vol. 18, pp. 433–458, 2020, doi: 10.1007/s10311-019-00959-w.
  • [20] S. Nasir, M. Jasamai, and I. Jantan, “Synthesis and Biological Evaluation of Chalcone Derivatives (Mini Review),” Mini Rev. Med. Chem., vol. 12, no. 13, pp. 1394–1403, 2012, doi: https://doi.org/10.2174/138955712804586648.
  • [21] E. Faria et al., “New Halogen Chalcone with Potential for Application in Biofuels,” Energy Fuels, vol. 34, pp. 5958–5968, 2020.
  • [22] S. Verma, A. Srivastava, and O. Pandey, “A Review on Chalcones Synthesis and their Biological Activity,” PharmaTutor, vol. 2, pp. 22–39, 2018, doi: https://doi.org/10.29161/PT.v6.i2.2018.
  • [23] S. Farooq and Z. Ngaini, “Recent Synthetic Methodologies for Chalcone Synthesis (2013-2018),” Curr. Organocatalysis, vol. 6, pp. 184–192, 2019, doi: https://doi.org/10.2174/2213337206666190306155140 [24] L. Castaño et al., “New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity,” Eur. J. Med. Chem., vol. 176, pp. 50–60, 2019, doi: https://doi.org/10.1016/j.ejmech.2019.05.013.
  • [24] [25] Y. Jin, “Recent advances in natural antifungal flavonoids and their derivatives,” Bioorg. Med. Chem. Lett., vol. 29, no. 19, p. 126589, 2019, doi: https://doi.org/10.1016/j.bmcl.2019.07.048.
  • [25] [26] Y. Fu et al., “New chalcone derivatives: synthesis, antiviral activity and mechanism of action,” R. Soc. Chem., vol. 10, pp. 24483–24490, 2020, doi: 10.1039/D0RA03684F.
  • [26] [27] M. Xu, P. Wu, F. Shen, J. Ji, and K. Rakesh, “Chalcone derivatives and their antibacterial activities: Current development,” Bioorg. Chem., vol. 91, p. 103133, 2019, doi: https://doi.org/10.1016/j.bioorg.2019.103133.
  • [27] [28] W. Eden, D. Alighiri, N. Wijayati, and S. Mursiti, “Synthesis of Chalcone Derivative from Clove Leaf Waste as a Natural Antioxidant,” Pharm. Chem. J., vol. 55, pp. 269–274, 2021, doi: https://doi.org/10.1007/s11094-021-02410-3.
  • [28] [29] V. Osipova, M. Polovinkina, L. Telekova, A. Velikorodov, N. Stepkina, and N. Berberova, “Synthesis and antioxidant activity of new hydroxy derivatives of chalcones,” Russ. Chem. Bull., vol. 69, pp. 504–509, 2020, doi: https://doi.org/10.1007/s11172-020-2790-y.
  • [29] [30] R. Ustabas, N. Suleymanoglu, N. Ozdemir, N. Kahriman, E. Bektas, and Y. Unver, “New Chalcone Derivative: Synthesis, Characterization, Computational Studies and Antioxidant Activity,” Lett. Org. Chem., vol. 17, no. 1, pp. 46–53, 2020, doi: https://doi.org/10.2174/1570178616666181130163115.
  • [30] [31] E. Faria et al., “Comparative Study of Chalcones and Their Potential as Additives for Biofuels,” Energy Fuels, vol. 35, no. 1, pp. 552–560, 2021, doi: https://doi.org/10.1021/acs.energyfuels.0c03448.
  • [31] [32] L. Berneira et al., “Employment of thermal analysis applied to the oxidative stability evaluation of biodiesel using chalcone analogues,” J. Therm. Anal. Carorimetry, vol. 146, pp. 1473–1482, 2021, doi: https://doi.org/10.1007/s10973-020-10189-w.
  • [32] [33] C. Moreira et al., “Structural insights and antioxidant analysis of a tri-methoxy chalcone with potential as a diesel-biodiesel blend additive,” Fuel Process. Technol., vol. 227, p. 107122, 2022, doi: https://doi.org/10.1016/j.fuproc.2021.107122.
  • [33] [34] G. M. Sheldrick, “SHELXS: Program for the solution of crystal structures.” University of Gottingen, Germany, 1990.
  • [34] [35] G. M. Sheldrick, “Crystal structure refinement with SHELXL,” no. Md, pp. 3–8, 2014, doi: 10.1107/S2053229614024218 3.
  • [35] [36] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. J. Puschmann, “OLEX2: a complete structure solution, refinement and general all round good thing Olex2,” J. Appl. Crystallogr., 2009, doi: doi:10.1107/S0021889808042726.
  • [36] [37] C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward, “The Cambridge structural database,” Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater., 2016, doi: 10.1107/S2052520616003954.
  • [37] [38] S. F. Sousa, P. A. Fernandes, and M. J. Ramos, “General Performance of Density Functionals,” J. Phys. Chem. A, vol. 111, no. 42, pp. 10439–10452, 2007, doi: 10.1021/jp0734474.
  • [38] [39] R. Paula et al., “A potential bio-antioxidant for mineral oil from cashew nutshell liquid: an experimental and theoretical approach,” Brazilian J. Chem. Eng., vol. 37, pp. 369–381, 2020, doi: https://doi.org/10.1007/s43153-020-00031-z.
  • [39] [40] J. Aihara, “Reduced HOMO−LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons,” J. Phys. Chem. A, vol. 103, no. 37, pp. 7487–7495, Sep. 1999, doi: 10.1021/jp990092i.
  • [40] [41] J. Teunissen, F. De Proft, and F. Vleeschouwer, “Tuning the HOMO–LUMO Energy Gap of Small Diamondoids Using Inverse Molecular Design,” J. Chem. Theory Comput., vol. 13, no. 3, pp. 1351–1365, 2017, doi: https://doi.org/10.1021/acs.jctc.6b01074.
  • [41] [42] “BS EN 15751 - 14: Automotive fuels - Fatty acid methyl ester (FAME) fuel and blends with diesel fuel - Determination of oxidation stability by accelerated oxidation method.” European
  • [42] Standards, p. 22, 2014.
  • [43] F. Bär, M. Knorr, O. Schröder, H. Hopf, T. Garbe, and J. Krahl, “Rancimat vs. rapid small scale oxidation test (RSSOT) correlation analysis, based on a comprehensive study of literature,” Fuel, vol. 291, p. 120160, 2021, doi: https://doi.org/10.1016/j.fuel.2021.120160.
  • [44] F. Tinello et al., “Comparison of OXITEST and RANCIMAT methods to evaluate the oxidative stability in frying oils,” Eur. Food Res. Technol., vol. 244, pp. 747–755, 2018, doi: https://doi.org/10.1007/s00217-017-2995-y.
  • [45] W. Cochran, “Estimation of Bacterial Densities by Means of the ‘Most Probable Number,’” Int. Biometric Soc., vol. 6, no. 2, pp. 105–116, 1950, doi: https://doi.org/10.2307/3001491.
  • [46] N. Rangel et al., “Effect of additives on the oxidative stability and corrosivity of biodiesel samples derived from babassu oil and residual frying oil: An experimental and theoretical assessment,” Fuel, vol. 289, p. 119939, 2021, doi: https://doi.org/10.1016/j.fuel.2020.119939.
  • [47] L. Na, H. Lu, G. Xin, T. Zhiping, and L. Jun, “DFT Study of Oxidation Reaction Paths for Ethanol Gasoline,” J. Energy Nat. Resour., vol. 9, no. 1, pp. 39–43, 2020, doi: 10.11648/j.jenr.20200901.17.
  • [48] “ANP Resolution n° 50/2013.” Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Rio de Janeiro, 2013.
  • [49] “ASTM D2274-14(2019)-Standard Test Method for Oxidation Stability of Distillate Fuel Oil (Accelerated Method).” Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, p. 6, 2019.
  • [50] “ASTM D5304-20-Standard Test Method for Assessing Middle Distillate Fuel Storage Stability by Oxygen Overpressure.” Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, p. 6, 2020.
  • [51] “ANP Resolution n° 45/2014.” Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Rio de Janeiro, 2014.
Como citar:

FARIA, EDUARDO; OLIVEIRA, ALINE; DUARTE, VITOR; NAPOLITANO, HAMILTON; CAVALCANTI, EDUARDO; "Aplicação de Chalconas e Análogos com Aditivos Antioxidantes em Misturas de Diesel e Biodiesel", p. 232-239 . In: Anais do XXIX Simpósio Internacional de Engenharia Automotiva . São Paulo: Blucher, 2022.
ISSN 2357-7592, DOI 10.5151/simea2022-PAP48

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações