Artigo - Open Access.

Idioma principal | Segundo idioma

Aplicação de Machine Learning para Diagnóstico de Falha em Motores a Diesel utilizando Sinais de Áudio

Machine Learning Application to Fault Diagnosis of Diesel Engines Using Audio Signals

JUNQUEIRA, B. F. ; VIOLATO, R. P. V. ; SIMÕES, F. O. ; TULESKI, B. ;

Artigo:

O presente trabalho tem como objetivo a análise de técnicas de machine learning aplicadas ao reconhecimento de padrões em arquivos de áudio contendo sons de motores a diesel capturados a partir de um smartphone. Foram gravadas amostras de áudio de 3 motores distintos, em 3 condições de operação diferentes: motor com funcionamento normal, com a mangueira furada e com falha no injetor. Várias combinações de tratamento dos dados, de atributos extraídos do áudio e de classificadores foram testadas. Os resultados mostram que essa abordagem é bastante promissora para diagnosticar falhas em motores a diesel.

Artigo:

The present work aims to analyze machine learning techniques applied to pattern recognition of diesel engines audio files captured with a smartphone. Audio samples from 3 different engines were recorded, under 3 different operating conditions: normal operation, with leaking hose and with injector failure. Several combinations of data processing, audio feature extraction and classifiers were evaluated. The results show that this approach is very promising for fault diagnosis of diesel engines.

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2022-PAP54

Referências bibliográficas
  • [1] Laguarta J, Hueto F, Subirana B. COVID-19
  • [2] Artificial Intelligence Diagnosis Using Only Cough
  • [3] Recordings. IEEE Open Journal of Engineering in
  • [4] Medicine and Biology, 2020.
  • [5] [2] Henriquez P, Alonso J B, Ferrer M A, Travieso C
  • [6] M. Review of Automatic Fault Diagnosis Systems Using
  • [7] Audio and Vibration Signals. IEEE Transactions on
  • [8] Systems, Man and Cybernetics: Systems, 2013.
  • [9] [3] Zhao R, Yan R, Chen Z, Wang P, Gao R X. Deep
  • [10] learning and its applications to machine health monitoring.
  • [11] Mechanical Systems and Signal Processing, 2019.
  • [12] [4] Soother D K, Daudpoto J, Harris N R, Hussain M,
  • [13] Mehran S, Kalwar I H, Hussain T, Memon T D. The
  • [14] Importance of Feature Processing in Deep-Learning-Based
  • [15] Condition Monitoring of Motors. Mathematical Problems in
  • [16] Engineering, 2021.
  • [17] [5] Sun W, Shao S, Zhao R, Yan R, Zhang X, Chen X.
  • [18] A Sparse Auto-encoder-Based Deep Neural Network
  • [19] Approach for Induction Motor Faults Classification.
  • [20] Measurement, 2016.
  • [21] [6] Yang M, Zhou W, Song T. Audio-based fault
  • [22] diagnosis for belt conveyor rollers. Neurocomputing, 2020.
  • [23] [7] Jena D P, Panigrahi S N. Motor bike piston-bore
  • [24] fault identification from engine noise signature analysis.
  • [25] Applied Acoustics, 2014.
  • [26] [8] Jafari S M, Mehdigholi H, Behzad M. Valve Fault
  • [27] Diagnosis in Internal Combustion Engines Using Acoustic
  • [28] Emission and Artificial Neural Network. Shock and
  • [29] Vibration, 2014.
  • [30] [9] Ahmed R, Mohammed E S, Gadsden S A, Tjong
  • [31] J, Habibi S. Automotive Internal-Combustion-Engine Fault
  • [32] Detection and Classification Using Artificial Neural
  • [33] Network Techniques. IEEE Transactions on Vehicular
  • [34] Technology, 2014.
  • [35] [10] Hou L, Zou J, Du C, Zhang J. A fault diagnosis
  • [36] model of marine diesel engine cylinder based on modified
  • [37] genetic algorithm and multilayer perceptron. Soft
  • [38] Computing, 2019.
  • [39] [11] Ramteke S M, Chelladurai H, Amarnath M.
  • [40] Diagnosis of liner scuffing fault of a diesel engine via
  • [41] vibration and acoustic emission analysis. Journal of
  • [42] Vibration Engineering & Technologies, 2019.
  • [43] [12] Ramteke S M, Chelladurai H, Amarnath M.
  • [44] Diagnosis and Classification of Diesel Engine Components
  • [45] Faults Using Time-Frequency and Machine Learning
  • [46] Approach. Journal of Vibration Engineering &
  • [47] Technologies, 2021.
  • [48] [13] Shiblee M, Yadav S K, Chandra B. Fault
  • [49] diagnosis of internal combustion engine using empirical
  • [50] mode decomposition and artificial neural networks. In:
  • [51] International conference on intelligent computing, 2017.
  • [52] [14] Ravikumar K N, Kumar H, Kumar G N,
  • [53] Gangadharan KV. Fault diagnosis of internal combustion
  • [54] engine gearbox using vibration signals based on signal
  • [55] processing techniques. Journal of Quality in Maintenance
  • [56] Engineering, 2020.
  • [57] [15] Ayati M, Shirazi F A, Ansari-Rad S, Zabihihesari
  • [58] A. Classification-based fuel injection fault detection of a
  • [59] trainset diesel engine using vibration signature analysis.
  • [60] Journal of Dynamic Systems, Measurement and Control,
  • [61] 2020.
  • [62] [16] Shatnawi Y, Al-Khassaweneh M. Fault diagnosis
  • [63] in internal combustion engines using extension neural
  • [64] network. IEEE Transactions on Industrial Electronics,
  • [65] 2013.
  • [66] [17] Wu J D, Liu C H. An expert system for fault
  • [67] diagnosis in internal combustion engines using wavelet
  • [68] packet transform and neural network. Expert systems with
  • [69] applications, 2009.
  • [70] [18] Gao R X, Yan R. Wavelet Packet Transform.
  • [71] Wavelets. Springer, Boston, MA, 2011.
  • [72] [19] Yen G G, Lin K. Wavelet Packet Feature
  • [73] Extraction for Vibration Monitoring. IEEE Transactions on
  • [74] Industrial Electronics, 2000.
  • [75] [20] Gaëtan F, Olga F. Learnable Wavelet Packet
  • [76] Transform for Data-Adapted Spectrograms. IEEE
  • [77] International Conference on Acoustics, Speech and Signal
  • [78] Processing (ICASSP), 2022.
  • [79] [21] Coifman R R, Meyer Y, Quake S, Wickerhauser
  • [80] M V. Signal processing and compression with wavelet
  • [81] packets. Wavelets and Their Applications, 1994.
  • [82] [22] Mushtaq Z, Su SF, Tran QV. Spectral images
  • [83] based environmental sound classification using CNN with
  • [84] meaningful data augmentation. Applied Acoustics, 2021.
  • [85] [23] Zhou Q, Shan J, Ding W, Wang C, Yuan S, Sun
  • [86] F, Li H, Fang B. Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network.
  • [87] Front Robot Ai, 2021.
  • [88] [24] Su Y, Zhang Ke, Wang J, Madani K.
  • [89] Environment Sound Classification Using a Two-Stream
  • [90] CNN Based on Decision-Level Fusion. Novel Modeling,
  • [91] Signal Processing and Machine Learning Techniques for
  • [92] Sensor Data, 2019.
  • [93] [25] Massoudi M, Verma S, Jain R. Urban Sound
  • [94] Classification using CNN. 6th International Conference on
  • [95] Inventive Computation Technologies (ICICT), 2021.
  • [96] [26] He P, Li Y, Chen S, Xu H, Zhu L, Wang L. Core
  • [97] looseness fault identification model based on Mel
  • [98] spectrogram-CNN. Journal of Physics: Conference Series,
  • [99] 2021.
  • [100] [27] Zhang Q, Lin J, Song H, Sheng G. Fault
  • [101] Identification Based on PD Ultrasonic Signal Using RNN,
  • [102] DNN and CNN. Condition Monitoring and Diagnosis
  • [103] (CMD), 2018.
  • [104] [28] Liang P, Deng C, Wu J, Yang Z, Zhu J.
  • [105] Intelligent Fault Diagnosis of Rolling Element Bearing
  • [106] Based on Convolutional Neural Network and Frequency
  • [107] Spectrograms. IEEE International Conference on
  • [108] Prognostics and Health Management, 2019
Como citar:

JUNQUEIRA, B. F.; VIOLATO, R. P. V.; SIMÕES, F. O.; TULESKI, B.; "Aplicação de Machine Learning para Diagnóstico de Falha em Motores a Diesel utilizando Sinais de Áudio", p. 274-282 . In: Anais do XXIX Simpósio Internacional de Engenharia Automotiva . São Paulo: Blucher, 2022.
ISSN 2357-7592, DOI 10.5151/simea2022-PAP54

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações