Maio 2014 vol. 1 num. 1 - 10th World Congress on Computational Mechanics
Full Article - Open Access.
APPLICATION OF RECIPROCAL INTERVENING VARIABLES FOR STOCHASTIC FINITE ELEMENT ANALYSIS
Valdebenito, M. A. ; Jensen, H. A. ; Labarca, A. A. ;
Full Article:
This papers investigates the application of first order Taylor expansion considering reciprocal intervening variables for estimating second order statistics of the response of uncertain linear static structural systems. Results presented in this contribution indicate that for estimating second order statistics, the applied expansion is more accurate than approaches based on first and second order Taylor series proposed in the literature while numerical efforts associated with the implementation are similar
Full Article:
Palavras-chave: Stochastic Finite Element Method, Log-normal random field, Second order statistics, Reciprocal intervening variable,
Palavras-chave:
DOI: 10.5151/meceng-wccm2012-18597
Referências bibliográficas
- [1] Bathe, K. Finite Element Procedures. Prentice Hall, New Jersey, 1996.
- [2] Der Kiureghian, A. and Ke, J.-B. “The stochastic finite element method in structural reliability”. Prob. Eng. Mech., 3(2), 83–91, 1988.
- [3] Fuchs, M. and Shabtay, E. “The reciprocal approximation in stochastic analysis of structures”. Chaos, Solit. Andamp; Fract., 11(6), 889–900, 2000.
- [4] Ghanem, R. and Spanos, P. “Polynomial chaos in stochastic finite elements”. J. Appl. Mech. (ASME), 57(1), 197–202, 1990.
- [5] Haftka, R. and Gürdal, Z. Elements of Structural Optimization. Kluwer, Dordrecht, The Netherlands, 3rd edition, 1992.
- [6] Jensen, H.A. and Sepulveda, A.E. “Design sensitivity metric for structural dynamic response” AIAA J., 36(9), 1686–1693, 1998.
- [7] Liu, W., Mani, A., and Belytschko, T. “Finite element methods in probabilistic mechanics”. Prob. Eng. Mech., 2(4), 201–213, 198
- [8] Loève, M. Probability theory. D. Van Nostrand Company, Inc., Princeton, New Jersey, third edition,1963.
- [9] Matthies, H., Brenner, C., Bucher, C., and Soares, C. “Uncertainties in probabilistic numerical analysis of structures and solids - Stochastic finite elements”. Struct. Saf., 19(3), 283–336, 1997.
- [10] Schmit, L. and Farshi, B. “Some approximation concepts for structural synthesis”. AIAA J., 12(5), 692–699, 1974.
- [11] Schuëller, G. I. “A state-of-the-art report on computational stochastic mechanics”. Prob. Eng. Mech., 12(4), 197–321, 1997.
- [12] Stefanou, G. “The stochastic finite element method: Past, present and future”. Comp. Meth. Appl. Mech. Eng., 198(9-12), 1031–1051, 2009.
- [13] Sudret, B. Stochastic finite element methods and reliability: A state-of-the-art report. Technical report, University of California, Berkeley, 2000.
Como citar:
Valdebenito, M. A.; Jensen, H. A.; Labarca, A. A.; "APPLICATION OF RECIPROCAL INTERVENING VARIABLES FOR STOCHASTIC FINITE ELEMENT ANALYSIS", p. 1945-1952 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1].
São Paulo: Blucher,
2014.
ISSN 2358-0828,
DOI 10.5151/meceng-wccm2012-18597
últimos 30 dias | último ano | desde a publicação
downloads
visualizações
indexações