Completo - Open Access.

Idioma principal | Segundo idioma

ASSESSMENT OF ENERGY POTENTIAL AND VALORIZATION OF SEWAGE SLUDGE AS BIOMASS

ASSESSMENT OF ENERGY POTENTIAL AND VALORIZATION OF SEWAGE SLUDGE AS BIOMASS

Maria, Mariana Pires ; Santana, Carlos Eduardo Maynard ; Lisboa, Halana Santos ; Cavalcanti, Eliane Bezerra ; Souza, Ranyere Lucena de ;

Completo:

" Sewage sludge (SS), a bioresidue rich in organic matter and nutrients, presents substantial potential for energy generation, biofuel production, and the development of sustainable bioproducts. This study aimed to assess the calorific value of SS and evaluate its potential as a biomass resource. A sample of SS was collected from a wastewater treatment plant in Aracaju - Sergipe, and subjected to physicochemical characterizations. The elemental analysis showed a carbon content of 35.93% and a high calorific value of 17.43 MJ/kg, validating SS as an efficient energy source. These findings underscore the importance of sustainable waste management strategies, contributing to the circular economy through waste treatment and bioenergy production. "

Completo:

" Sewage sludge (SS), a bioresidue rich in organic matter and nutrients, presents substantial potential for energy generation, biofuel production, and the development of sustainable bioproducts. This study aimed to assess the calorific value of SS and evaluate its potential as a biomass resource. A sample of SS was collected from a wastewater treatment plant in Aracaju - Sergipe, and subjected to physicochemical characterizations. The elemental analysis showed a carbon content of 35.93% and a high calorific value of 17.43 MJ/kg, validating SS as an efficient energy source. These findings underscore the importance of sustainable waste management strategies, contributing to the circular economy through waste treatment and bioenergy production. "

Palavras-chave: Calorific value; Sustainability; Bioenergy; Effluent; Biofuels,

Palavras-chave: Calorific value; Sustainability; Bioenergy; Effluent; Biofuels,

DOI: 10.5151/siintec2024-393499

Referências bibliográficas
  • [1] "1 KARRI, R.R.; RAVINDRAN, G.; DEHGHANI, M.H. Wastewater—Sources, Toxicity,
  • [2] and Their Consequences to Human Health. Soft Comput. Tech. Solid Waste
  • [3] Wastewater Manag. 2021, 3–3
  • [4] 2 KHAN, M.A.; NAQVI, S.R.; TAQVI, S.A.A.; SHAHBAZ, M.; ALI, I.; MEHRAN, M.T.;
  • [5] KHOJA, A.H.; JUCHELKOVÁ, D. Air Gasification of High-Ash Sewage Sludge for
  • [6] Hydrogen Production: Experimental, Sensitivity and Predictive Analysis. Int. J.
  • [7] Hydrogen Energy 2022, 47, 37374–37384.
  • [8] 3 SINGH, V.; PHULERIA, H.C.; CHANDEL, M.K. Estimation of Energy Recovery
  • [9] Potential of Sewage Sludge in India: Waste to Watt Approach. J. Clean. Prod. 2020,
  • [10] 276, 122538.
  • [11] 4 LIU, X.; ZHU, F.; ZHANG, R.; ZHAO, L.; QI, J. Recent Progress on Biodiesel
  • [12] Production from Municipal Sewage Sludge. Renew. Sustain. Energy Rev. 2021,
  • [13] 135, 110260.
  • [14] 5 ALI, L.; AHMED BALOCH, K.; PALAMANIT, A.; RAZA, S.A.; LAOHAPRAPANON, S.; TECHATO, K. Physicochemical Characterisation and the Prospects of Biofuel
  • [15] Production from Rubberwood Sawdust and Sewage Sludge. Sustainability 2021,
  • [16] 13, 5942.
  • [17] 6 GAO, N.; KAMRAN, K.; QUAN, C.; WILLIAMS, P.T. Thermochemical Conversion of
  • [18] Sewage Sludge: A Critical Review. Prog. Energy Combust. Sci. 2020, 79, 100843.
  • [19] 7 AGHEL, B.; YAHYA, S.I.; REZAEI, A.; ALOBAID, F. A Dynamic Recurrent Neural
  • [20] Network for Predicting Higher Heating Value of Biomass. Int. J. Mol. Sci. 2023, 24,
  • [21] 5780.
  • [22] 8 BORA, R.R.; RICHARDSON, R.E.; YOU, F. Resource Recovery and Waste-toEnergy from Wastewater Sludge via Thermochemical Conversion Technologies in
  • [23] Support of Circular Economy: A Comprehensive Review. BMC Chem. Eng. 2020, 2,
  • [24] 8.
  • [25] 9 DALAL, R.; WATHORE, R.; LABHASETWAR, N. Sustainable Production of Biochar,
  • [26] Bio-Gas and Bio-Oil from Lignocellulosic Biomass and Biomass Waste. In; 2022; pp.
  • [27] 177–205.
  • [28] 10 BATTISTA, F.; FRISON, N.; PAVAN, P.; CAVINATO, C.; GOTTARDO, M.; FATONE,
  • [29] F.; EUSEBI, A.L.; MAJONE, M.; ZEPPILLI, M.; VALENTINO, F.; et al. Food Wastes
  • [30] and Sewage Sludge as Feedstock for an Urban Biorefinery Producing Biofuels and
  • [31] Added‐value Bioproducts. J. Chem. Technol. Biotechnol. 2020, 95, 328–338.
  • [32] 11 PIBOONUDOMKARN, S.; KHEMTHONG, P.; YOUNGJAN, S.; WANTALA, K.;
  • [33] TANBOONCHUY, V.; LUBPHOO, Y.; KHUNPHONOI, R. Co-Hydrothermally
  • [34] Carbonized Sewage Sludge and Lignocellulosic Biomass: An Efficiently Renewable
  • [35] Solid Fuel. Arab. J. Chem. 2023, 16, 105315.
  • [36] 12 O’BOYLE, M.; MOHAMED, B.A.; LI, L.Y. Co-Pyrolysis of Sewage Sludge and
  • [37] Biomass Waste into Biofuels and Biochar: A Comprehensive Feasibility Study Using
  • [38] a Circular Economy Approach. Chemosphere 2024, 350, 141074.
  • [39] 13 HUANG, C.; MOHAMED, B.A.; LI, L.Y. Comparative Life-Cycle Energy and
  • [40] Environmental Analysis of Sewage Sludge and Biomass Co-Pyrolysis for Biofuel and
  • [41] Biochar Production. Chem. Eng. J. 2023, 457, 141284.
  • [42] 14 NIKIEMA, M.; BARSAN, N.; MAIGA, Y.; SOMDA, M.K.; MOSNEGUTU, E.;
  • [43] OUATTARA, C.A.T.; DIANOU, D.; TRAORE, A.S.; NEDEFF, V.; OUATTARA, A.S.
  • [44] Optimization of Biogas Production from Sewage Sludge: Impact of Combination with
  • [45] Bovine Dung and Leachate from Municipal Organic Waste. Sustainability 2022, 14,
  • [46] 4380.
  • [47] 15 MANALI, A.; POTHOULAKI, A.; GIKAS, P. The State of the Art in Biosolids
  • [48] Gasification. J. Environ. Manage. 2024, 364, 121385.
  • [49] 16 NOUSHABADI, A.S.; DASHTI, A.; AHMADIJOKANI, F.; HU, J.; MOHAMMADI, A.H.
  • [50] Estimation of Higher Heating Values (HHVs) of Biomass Fuels Based on Ultimate
  • [51] Analysis Using Machine Learning Techniques and Improved Equation. Renew.
  • [52] Energy 2021, 179, 550–562.
  • [53] 17 SCHAUM, C.; LENSCH, D.; CORNEL, P. Evaluation of the Energetic Potential of
  • [54] Sewage Sludge by Characterization of Its Organic Composition. Water Sci. Technol.
  • [55] 2016, 73, 3072–3079.
  • [56] 18 LI, G.; YANG, T.; XIAO, W.; YAO, X.; SU, M.; PAN, M.; WANG, X.; LYU, T. Enhanced Biofuel Production by Co-Pyrolysis of Distiller’s Grains and Waste Plastics: A
  • [57] Quantitative Appraisal of Kinetic Behaviors and Product Characteristics.
  • [58] Chemosphere 2023, 342, 140137.
  • [59] 19 CEZARINIA, E.C.A.; PETERLI, Z.; SANTIAGO, YORK CASTILLO VENTURINI, O.J.
  • [60] Sewage Sludge Energy Potential Assessment: Characterization Approach. Chem.
  • [61] Eng. Trans. 2024.
  • [62] 20 CORREIA, M.A.C.; SEYE, O.; SILVA, A.M.P. DA; SILVA, R.L. da Características e
  • [63] Potencial Energético Do Bagaço Da Cana-de-Açúcar Armazenado Sem Cobertura
  • [64] Por Um Período Prolongado. Rev. em Agronegócio e Meio Ambient. 2020, 13,
  • [65] 173–187.
  • [66] 21 APHA Standard Methods for The Examination Of Water and Wastewater.; 2017;
  • [67] 22 ADEDEJI, O.M.; RUSSACK, J.S.; MOLNAR, L.A.; BAUER, S.K. Co-Hydrothermal
  • [68] Liquefaction of Sewage Sludge and Beverage Waste for High-Quality Bio-Energy
  • [69] Production. Fuel 2022, 324, 124757.
  • [70] 23 KRISHNAN, R.; HAUCHHUM, L.; GUPTA, R.; PATTANAYAK, S. Prediction of
  • [71] Equations for Higher Heating Values of Biomass Using Proximate and Ultimate
  • [72] Analysis. In Proceedings of the 2018 2nd International Conference on Power, Energy
  • [73] and Environment: Towards Smart Technology (ICEPE); IEEE, June 2018; pp. 1–5.
  • [74] 24 HU, M.; HU, H.; YE, Z.; TAN, S.; YIN, K.; CHEN, Z.; GUO, D.; RONG, H.; WANG,
  • [75] J.; PAN, Z.; et al. A Review on Turning Sewage Sludge to Value-Added Energy and
  • [76] Materials via Thermochemical Conversion towards Carbon Neutrality. J. Clean.
  • [77] Prod. 2022, 379, 134657.
  • [78] 25 ALVAREZ, J.; LOPEZ, G.; AMUTIO, M.; ARTETXE, M.; BARBARIAS, I.; ARREGI,
  • [79] A.; BILBAO, J.; OLAZAR, M. Characterization of the Bio-Oil Obtained by Fast
  • [80] Pyrolysis of Sewage Sludge in a Conical Spouted Bed Reactor. Fuel Process.
  • [81] Technol. 2016, 149, 169–175.
  • [82] 26 FAN, Y.; FONSECA, F.G.; GONG, M.; HOFFMANN, A.; HORNUNG, U.; DAHMEN,
  • [83] N. Energy Valorization of Integrating Lipid Extraction and Hydrothermal Liquefaction
  • [84] of Lipid-Extracted Sewage Sludge. J. Clean. Prod. 2021, 285, 124895.
  • [85] 27 ELLERSDORFER, M. Hydrothermal Co-Liquefaction of Chlorella Vulgaris with Food
  • [86] Processing Residues, Green Waste and Sewage Sludge. Biomass and Bioenergy
  • [87] 2020, 142, 105796.
  • [88] 28 SIEDLECKA, E.; SIEDLECKI, J. Influence of Valorization of Sewage Sludge on
  • [89] Energy Consumption in the Drying Process. Energies 2021, 14, 4511. "
Como citar:

Maria, Mariana Pires; Santana, Carlos Eduardo Maynard; Lisboa, Halana Santos; Cavalcanti, Eliane Bezerra; Souza, Ranyere Lucena de; "ASSESSMENT OF ENERGY POTENTIAL AND VALORIZATION OF SEWAGE SLUDGE AS BIOMASS", p. 1058-1065 . In: . São Paulo: Blucher, 2024.
ISSN 2357-7592, DOI 10.5151/siintec2024-393499

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações