Dezembro 2024 vol. 11 num. 2 - X Simpósio Internacional de Inovação e Tecnologia
Completo - Open Access.
ATMOSPHERIC POLLUTANT DISPERSION MODELING: AN APPROACH USING HAUSDORFF DERIVATIVE
ATMOSPHERIC POLLUTANT DISPERSION MODELING: AN APPROACH USING HAUSDORFF DERIVATIVE
Silva, Jose Roberto Dantas da ; Palmeira, Anderson da Silva ; Xavier, Paulo Henrique F. ; Moreira, Davidson Martins ;
Completo:
"The main objective of this work is to present a methodological approach to obtaining an analytical solution for the two-dimensional fractal advection-diffusion equation, considering the Hausdorff derivative, so that it is possible to simulate the dispersion of atmospheric pollutants in the planetary boundary layer without losing dimensional consistency of the equation. The main results obtained are: a) the fractal parameter is a function of atmospheric stability, explicitly depending on the relationship between friction velocity and convective velocity ( * * u w ); b) the inclusion of fractal derivative in the atmospheric dispersion equation improves the description of the turbulent transport process in the field region near the emission source."
Completo:
"The main objective of this work is to present a methodological approach to obtaining an analytical solution for the two-dimensional fractal advection-diffusion equation, considering the Hausdorff derivative, so that it is possible to simulate the dispersion of atmospheric pollutants in the planetary boundary layer without losing dimensional consistency of the equation. The main results obtained are: a) the fractal parameter is a function of atmospheric stability, explicitly depending on the relationship between friction velocity and convective velocity ( * * u w ); b) the inclusion of fractal derivative in the atmospheric dispersion equation improves the description of the turbulent transport process in the field region near the emission source."
Palavras-chave: Turbulent diffusion; Hausdorff derivative; Advection-diffusion equation; Fractional calculus,
Palavras-chave: Turbulent diffusion; Hausdorff derivative; Advection-diffusion equation; Fractional calculus,
DOI: 10.5151/siintec2024-393092
Referências bibliográficas
- [1] "1 MANDELBROT, B.B., 1982. The Fractal Geometry of Nature. W. H. Freeman and
- [2] Company. New York.
- [3] 2 ARYA, S., 1995. Modeling and parameterization of near-source diffusion in weak
- [4] winds. Journal Applied Meteorology 34(5), 1112–1122.
- [5] 3 MOREIRA, D.M. and VILHENA, M.T., 2009. Air Pollution and Turbulence:
- [6] Modeling and Applications. CRC Press, Boca Raton, Florida, 354 pp.
- [7] 4 SCHUMER, R., MEERSCHAERT, M.M. and BAEUMER, B., 2009. Fractional
- [8] advection-dispersion equations for modeling transport at the Earth's surface.
- [9] Journal of Geophysical Research 114, 2156-2202.
- [10] 5 CAI, W., CHEN, W., XU, W., 2016. Characterizing the creep of viscoelastic
- [11] materials by fractal derivative models. International Journal of Non-Linear
- [12] Mechanics 87, 58-63.
- [13] 6 CAI, W., CHEN, W., WANG, F., 2018. Three-dimensional Hausdorff derivative
- [14] diffusion model for isotropic/anisotropic fractal porous media. Thermal Science 22(1),
- [15] 1-6.
- [16] 7 ZHANG, Y., SUNA, H.G., STOWELL,H.H., ZAYERNOURI, M., HANSENB, S.E.,
- [17] 20 A review of applications of fractional calculus in Earth system dynamics.
- [18] Chaos, Solitons & Fractals 201, 29-46.
- [19] 8PRATES, J.H.S. and MOREIRA, D.M., 2020. Fractional derivatives in geophysical
- [20] modeling approach using the modified Adomian decomposition method. Pure
- [21] and Applied Geophysics 177, 4309-4323.
- [22] 9 PODLUBNY, I., 1999. Fractional differential equations. Academic Press, 340 pp.
- [23] 10 GOMEZ-AGUILAR, J.F., MIRANDA-HERNANDEZ, M., LOPEZ-LOPEZ, M.G.,
- [24] ALVARADO-MARTINEZ, V.M., BALEANU, D., 2016. Modeling and simulation of the
- [25] fractional space-time diffusion equation. Commun. Nonlinear Sci. Numer. Simul.
- [26] 30, 115–127.
- [27] 11 BALANKIN, A.S., ELIZARRARAZ, B.E., 2012. Map of fluid flow in fractal porous
- [28] medium into fractal continuum flow, Physical Review E 85(5), 056314.
- [29] 12 LIN, G., 2015. An effective phase shift diffusion equation method for analysis
- [30] of PFG normal and fractional diffusions, Journal of Magnetic Resonance 259, 232-
- [31] 240.
- [32] 13 LIN, G., 2016. Instantaneous signal attenuation method for analysis of PFG
- [33] fractional diffusions, Journal of Magnetic Resonance 269, 36-49.
- [34] 14 HE, C.A.,H., LIU, C., HE, J.H., SEDIGHI, H.M., SHOKRI, A., GEPREEL, K.A., 2022.
- [35] A fractal model for the internal temperature response of a porous concrete. Appl.
- [36] Comput. Math. 21(1), 71-77.
- [37] 16 GOULART, A.G.O., LAZO, M.J., SUAREZ, J.M.J., MOREIRA, D.M., 2017.
- [38] Fractional derivative models for atmospheric dispersion of pollutants. Phys A
- [39] 477, 9–19.
- [40] 17 MOREIRA, D.M., MORET, M., 2018. A new direction in the atmospheric pollutant
- [41] dispersion inside of the planetary boundary layer. J. Appl. Meteorol. Clim. 57(1),
- [42] 185–192. 18 XAVIER, P.H.F.; NASCIMENTO, E.G.S.; MOREIRA, D.M., 2019. A model using
- [43] fractional derivatives with vertical eddy diffusivity depending on the source
- [44] distance applied to the dispersion of atmospheric pollutants. Pure and applied
- [45] geophysics, v. 176, n. 4, p. 1797-1806.
- [46] 19 ACIOLI, P.S., XAVIER, F.A., MOREIRA, D.M., 2019. Mathematical model using
- [47] fractional derivatives applied to the dispersion of pollutants in the planetary
- [48] boundary layer. Boundary-layer meteorology 170 (2), 285-304.
- [49] 20 SANTOS Soledade, A.L.; MARTINS Moreira, D. 2022, Fractional Atmospheric
- [50] Pollutant Dispersion Equation in a Vertically Inhomogeneous Planetary
- [51] Boundary Layer: an Analytical Solution Using Conformable Derivatives. Water,
- [52] Air, & Soil Pollution, v. 233, n. 9, p. 395.
- [53] 21 MOREIRA, D.M., 2022. An approach for the atmospheric pollutant dispersion
- [54] equation considering anomalous diffusion in strongly unstable conditions. Pure
- [55] and Applied Geophysics 179, 1433-1443. geophysics, v. 176, n. 4, p. 1797-1806, 2019.
- [56] 22 WORTMANN, S., VILHENA, M.T., MOREIRA, D.M., BUSKE, D., 2005. A new
- [57] analytical approach to simulate the pollutant dispersion in the PBL. Atmospheric
- [58] Environment 39(12), 2187-2194.
- [59] 23 ADOMIAN, G., 1994. Solving frontier problems of physics. The decomposition
- [60] method, Kluwer, Boston.
- [61] 24 MOREIRA, D.M., SANTOS, C.A.G., 2019. A new approach to handle gas-particle
- [62] transformation in air pollution modeling using fractional derivatives. Atmos.
- [63] Pollut. Res. 10, 1577–1587.
- [64] 25 COTTA, R.M., 1993. Integral transforms in computational heat and fluid flow.
- [65] CRC Press, 352 pp.
- [66] 26 PALMEIRA, Anderson; XAVIER, Paulo; MOREIRA, Davidson. Simulation of
- [67] atmospheric pollutant dispersion considering a bi-flux process and fractional
- [68] derivatives. Atmospheric Pollution Research, v. 11, n. 1, p. 57-66, 2020.
- [69] 27 SILVA, F.S., MOREIRA, D.M., GONÇALVES, M.A.M.S., 2018. Conformable
- [70] Laplace transform of fractional differential equations. Axioms 7, 55.
- [71] 28 GRYNING, S.E., LYCK, E., 1984. Atmospheric dispersion from elevated source
- [72] in an urban area: comparison between tracer experimental and model
- [73] calculations. Journal of Climate and Applied Meteorology. 23, 651 – 654.
- [74] 29 COLIN, C., MASSION, V., & PACI, A. (2017). Adaptation of the meteorological
- [75] model Meso-NH to laboratory experiments: implementations and validation.
- [76] Geoscientific Model Development Discussions, 1-32.
- [77] 30 HANNA, S.R. and PAINE, R.J., 1989. Hybrid plume dispersion model (hpdm)
- [78] development and evaluation. J. Appl. Meteorol. 28, 206 – 224."
Como citar:
Silva, Jose Roberto Dantas da; Palmeira, Anderson da Silva; Xavier, Paulo Henrique F.; Moreira, Davidson Martins; "ATMOSPHERIC POLLUTANT DISPERSION MODELING: AN APPROACH USING HAUSDORFF DERIVATIVE", p. 1185-1194 . In: .
São Paulo: Blucher,
2024.
ISSN 2357-7592,
DOI 10.5151/siintec2024-393092
últimos 30 dias | último ano | desde a publicação
downloads
visualizações
indexações