Completo - Open Access.

Idioma principal | Segundo idioma

AUTOMATION OF BATCH REACTOR FOR VEGETABLE OIL BIOTRANSFORMATION USING ARDUINO FOR REAL-TIME PROCESS MONITORING

AUTOMATION OF BATCH REACTOR FOR VEGETABLE OIL BIOTRANSFORMATION USING ARDUINO FOR REAL-TIME PROCESS MONITORING

Aragão, Yan Victor Melo ; Rodrigues, César de Almeida ; Santos, Jefferson Cleriston Barros ; da Silva, Alan Rozendo Campos ; Souza, Ranyere Lucena de ; Soares, Cleide Mara Faria ;

Completo:

"This study advances the efficiency and accuracy of enzymatic hydrolysis reactions by employing Arduino-based real-time monitoring systems. Arduino platforms, featuring programmable microcontrollers and an Integrated Development Environment (IDE), provide a low-cost, user-friendly solution with essential processing and control capabilities. The research focuses on a cost-effective batch reactor for vegetable oil biotransformation, integrating temperature and pH control mechanisms. Sensors DS18B20 and PH4502C were calibrated with an R² of 0.99. Testing of licuri oil hydrolysis showed the system effectively monitored reaction parameters, achieving a 95% conversion rate in 150 minutes. This approach demonstrates the potential of using low-cost microcontrollers for broader applications in bioprocess monitoring, paving the way for more accessible and efficient biotransformation technologies."

Completo:

"This study advances the efficiency and accuracy of enzymatic hydrolysis reactions by employing Arduino-based real-time monitoring systems. Arduino platforms, featuring programmable microcontrollers and an Integrated Development Environment (IDE), provide a low-cost, user-friendly solution with essential processing and control capabilities. The research focuses on a cost-effective batch reactor for vegetable oil biotransformation, integrating temperature and pH control mechanisms. Sensors DS18B20 and PH4502C were calibrated with an R² of 0.99. Testing of licuri oil hydrolysis showed the system effectively monitored reaction parameters, achieving a 95% conversion rate in 150 minutes. This approach demonstrates the potential of using low-cost microcontrollers for broader applications in bioprocess monitoring, paving the way for more accessible and efficient biotransformation technologies."

Palavras-chave: Enzyme; Biocatalysis; Bioprocesses; process automation; microcontrollers,

Palavras-chave: Enzyme; Biocatalysis; Bioprocesses; process automation; microcontrollers,

DOI: 10.5151/siintec2024-393541

Referências bibliográficas
  • [1] " RODRIGUES, C. A. et al. Computational and Experimental Analysis on the
  • [2] Preferential Selectivity of Lipases for Triglycerides in Licuri Oil. Bioprocess
  • [3] Biosyst. Eng., v. 1, n. 3, 2021. doi:10.1007/s00449-021-02590-y.
  • [4] 2. RODRIGUES, C. A. et al. Extending the Computational and Experimental Analysis
  • [5] of Lipase Active Site Selectivity. Bioprocess Biosyst. Eng., v. 47, p. 313–323,
  • [6] 2024. doi:10.1007/S00449-023-02956-4.
  • [7] 3. ARANA-PEÑA, S. et al. One Pot Use of Combilipases for Full Modification of Oils
  • [8] and Fats: Multifunctional and Heterogeneous Substrates. 2020. v. 10. ISBN 6. MAJEWSKI, M. B. et al. Enzyme Encapsulation in Metal–Organic Frameworks
  • [9] for Applications in Catalysis. CrystEngComm, v. 19, p. 4082–4091, 2017.
  • [10] doi:1039/C7CE00022G.
  • [11] 7. SAINTE BEUVE, R.; MORISON, K. R. Enzymatic Hydrolysis of Canola Oil with
  • [12] Hydrodynamic Cavitation. Chem. Eng. Process. Process Intensif., v. 49, p. 1101–
  • [13] 1106, 2010. doi:10.1016/J.CEP.2010.08.012.
  • [14] 8. VANI, D.; SWAPNA, R. Network Technologies and Microcontrollers in Internet of
  • [15] Things (IoT) - A Review. i-manager’s J. Commun. Eng. Syst., v. 10, p. 1, 2021.
  • [16] doi:10.26634/jcs.10.1.18160.
  • [17] 9. KHORASSANI, S. M. H. et al. A Facile Synthesis of Stable Phosphorus Ylides
  • [18] Derived from Harmin, Harman, and Carbazole. Phosphorus, Sulfur Silicon Relat.
  • [19] Elem., v. 181, p. 567–572, 2006. doi:10.1080/10426500500269190.
  • [20] 10. SILVA, A. R. C. et al. Strategies to Reuse of Biocatalysts in the Hydrolysis and
  • [21] Esterification Reactions from Licuri (Syagrus Coronata (Mart.) Becc.) Oil.
  • [22] ChemCatChem, 20 doi:10.1002/CCTC.202200448.
  • [23] 11. YULIZAR, D. et al. Performance Analysis Comparison of DHT11, DHT22 and
  • [24] DS18B20 as Temperature Measurement. Atlantis Press International BV, 2023.
  • [25] v. 1. ISBN 9789464632323.
  • [26] 12. FONSECA-CAMPOS, J. et al. Multiparametric System for Measuring
  • [27] Physicochemical Variables Associated to Water Quality Based on the Arduino
  • [28] Platform. IEEE Access, v. 10, p. 69700–69713, 2022.
  • [29] doi:10.1109/ACCESS.2022.3187422.
  • [30] 13. HALLING, Peter J.; GUPTA, Munishwar N. Measurement and reporting of data
  • [31] in applied biocatalysis. Perspectives in Science, v. 1, n. 1-6, p. 98-109, 2014.
  • [32] 5551330877.
  • [33] 4. UBANDO, A. T.; FELIX, C. B.; CHEN, W. H. Biorefineries in Circular Bioeconomy:
  • [34] A Comprehensive Review. Bioresour. Technol., v. 299, 2020. p. 122585.
  • [35] doi:10.1016/J.BIORTECH.2019.122585.
  • [36] 5. GALANAKIS, C. Food Waste Valorization Opportunities for Different Food
  • [37] Industries. In: Interact. Food Ind. Environ. 2020. p. 341–422. doi:10.1016/B978-
  • [38] 0-12-816449-5.00011-4."
Como citar:

Aragão, Yan Victor Melo; Rodrigues, César de Almeida; Santos, Jefferson Cleriston Barros; da Silva, Alan Rozendo Campos; Souza, Ranyere Lucena de; Soares, Cleide Mara Faria; "AUTOMATION OF BATCH REACTOR FOR VEGETABLE OIL BIOTRANSFORMATION USING ARDUINO FOR REAL-TIME PROCESS MONITORING", p. 645-651 . In: . São Paulo: Blucher, 2024.
ISSN 2357-7592, DOI 10.5151/siintec2024-393541

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações