Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Avaliação de Ciclo de Vida do berço-ao-portão de veículos leves: Uma revisão da literatura

Cradle-to-gate Life Cycle Assessment of light duty vehicles: A literature review.

SOARES, T. Z. ; GAVIOLI, L.M. ; LAMBIASI, L.N. ; CESILLA, L.S. ; PICOLI, J.F. ; OSORIO, G. ;

Trabalho completo:

Emissões de GEE do berço-ao-portão de veículos leves convencionais, híbridos e elétricos, foram avaliadas nesta revisão de literatura. Tendo como foco a Avaliação de Ciclo de Vida (ACV), a análise de 58 estudos indicou que a fabricação de veículos elétricos é mais intensa em carbono quando em comparação a outros tipos de propulsão (BEV 10,6 – 15,9; ICEV 6,3 – 12,7 tCO2eq./veículo). A produção das baterias contribui com cerca de 40% das emissões e, para os demais veículos, o trem de força e a carroceria respondem por mais da metade das emissões. Aço e alumínio representam a maior parte das emissões por material, bem como o material ativo do cátodo e a energia consumida na montagem de células no caso das baterias. Diferenças entre resultados da literatura decorrem não só de contrastes entre premissas da ACV, escopo geográfico e temporal, mas também do mix energético adotado. Apenas um estudo avaliou impactos com escopo de produção no Brasil, evidenciando uma lacuna de conhecimento e justificando a importância de dados primários e transparentes no contexto nacional que permitam resultados de maior consistência e confiabilidade para possíveis comparações internacionais. Por fim, vantagens comparativas do país podem impulsionar a indústria automotiva para a descarbonização do setor.

Trabalho completo:

Cradle-to-gate GHG emissions from internal combustion engine vehicle (ICEV), hybrid electric vehicle (HEV) and battery electric vehicle (BEV) were assessed in this literature review. Focusing on Life Cycle Assessment (LCA), the analysis of 58 studies indicated that the manufacture of electric vehicles is more carbon intensive when compared to other types of propulsion (BEV 9,8 - 15.7; ICEV 6.3 - 12.7 tCO2eq. /vehicle). Battery production contributes around 40% of emissions and, for other vehicles, the powertrain and body account for more than half of emissions. Steel and aluminum account for most of the emissions by material, as well as the active material of the cathode and the energy consumed in the assembly of cells in the case of batteries. Differences between results in the literature stem not only from contrasts between LCA assumptions, geographical and temporal scope, but also from the energy mix adopted. Only one study has evaluated impacts with a production scope in Brazil, highlighting a knowledge gap and justifying the importance of primary and transparent data in the national context that allows for more consistent and reliable results for possible international comparisons. The country

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2024-PAP52

Referências bibliográficas
  • [1] " (2021), Managing Climate Risks, Facing up to Losses and Damages, OECD Publishing, Paris, https://doi.org/10.1787/55ea1cc9-en.
  • [2] BRASIL. Estimativas anuais de emissões de gases de efeito estufa no Brasil / Coordenação Geral do Clima. 5. ed. Brasília: Ministério da Ciência, Tecnologia, Inovações e Comunicações, 2019.
  • [3] EPE. Balanço Energético Nacional - Ano base 2022. [s.l: s.n.]
  • [4] Das, P.K., Bhat, M.Y. & Sajith, S. Life cycle assessment of electric vehicles: a systematic review of literature.
  • [5] Environ Sci Pollut Res 31, 73–89 (2024). https://doi.org/10.1007/s11356-023-30999-3
  • [6] [5] VOLVO CAR GROUP. Annual and Sustainable Report 2022. [s.l: s.n.]. https://vp272.alertir.com/afw/files/press/volvocar/202303076447-1.pdf
  • [7] [6] International Standard Organization, 1997a. ISO 14040: Environmental Management- Life Cycle Assessment-Principles and Framework. International Standard Organization, Geneva, Switzerland
  • [8] [7] International Standard Organization, 1997b. ISO 14044: Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Standard Organization, Geneva, Switzerland.
  • [9] [8] Verma, S., Dwivedi, G., Verma, P., 2021. Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: a review. Mater. Today: Proc. https://doi.org/10.1016/j.matpr.2021.01.666.
  • [10] [9] ARSHAD, F.; LIN, J.; MANURKAR, N.; FAN, E.; AHMAD, A.; TARIQ, M. un N.; WU, F.; CHEN, R.; LI, L. Life Cycle Assessment of Lithium-ion Batteries: A Critical Review. Resources, Conservation and Recycling, v. 180, p. 106164, 1 maio 2022.
  • [11] [10] PETERS, J. F.; BAUMANN, M.; ZIMMERMANN, B.; BRAUN, J.; WEIL, M. The environmental impact of Li-Ion batteries and the role of key parameters – A review. Renewable and Sustainable Energy Reviews, v. 67, p. 491–506, 1 jan. 2017.
  • [12] [11] AICHBERGER, C.; JUNGMEIER, G. Environmental Life Cycle Impacts of Automotive Batteries Based on a Literature Review. Energies, v. 13, n. 23, 2020. https://www.mdpi.com/1996-1073/13/23/6345
  • [13] [12] VELANDIA VARGAS, J. E.; FALCO, D. G.; DA SILVA WALTER, A. C.; CAVALIERO, C. K. N.; SEABRA, J. E. A. Life cycle assessment of electric vehicles and buses in Brazil: effects of local manufacturing, mass reduction, and energy consumption evolution. International Journal of Life Cycle Assessment, v. 24, n. 10, p. 1878–1897, 1 out. 2019. https://link.springer.com/article/10.1007/s11367-019-01615-9
  • [14] [13] GAUTO, M. A.; CARAZZOLLE, M. F.; RODRIGUES, M. E. P.; DE ABREU, R. S.; PEREIRA, T. C.; PEREIRA, G. A. G. Hybrid vigor: Why hybrids with sustainable biofuels are better than pure electric vehicles. Energy for Sustainable Development, v. 76, p. 101261, 1 out. 2023.
  • [15] [14] HAWKINS, T. R.; SINGH, B.; MAJEAU-BETTEZ, G.; STRØMMAN, A. H. Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, v. 17, n. 1, p. 53–64, 1 fev. 2013. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1530-9290.2012.00532.x
  • [16] [15] SHAFIQUE, M.; AZAM, A.; RAFIQ, M.; LUO, X. Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong. Research in Transportation Economics, v. 91, p. 101112, 1 mar. 2022.
  • [17] [16] JOSHI, A.; SHARMA, R.; BARAL, B. Comparative life cycle assessment of conventional combustion engine vehicle, battery electric vehicle and fuel cell electric vehicle in Nepal. Journal of Cleaner Production, v. 379, p. 134407, 2022. https://www.sciencedirect.com/science/article/pii/S0959652622039798
  • [18] [17] ELGOWAINY, A.; HAN, J.; WARD, J.; JOSECK, F.; GOHLKE, D.; LINDAUER, A.; RAMSDEN, T.; BIDDY, M.; ALEXANDER, M.; BARNHART, S.; SUTHERLAND, I.; VERDUZCO, L.; WALLINGTON, T. J. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment. Environmental Science and Technology, v. 52, n. 4, p. 2392–2399, 20 fev. 20
  • [19] [18] HAWKINS, T. R.; SINGH, B.; MAJEAU-BETTEZ, G.; STRØMMAN, A. H. Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, v. 17, n. 1, p. 53–64, 1 fev. 2013. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1530-9290.2012.00532.x
  • [20] [19] SHAFIQUE, M.; AZAM, A.; RAFIQ, M.; LUO, X. Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong. Research in Transportation Economics, v. 91, p. 101112, 1 mar. 2022.
  • [21] [20] ONAT, N. C.; KUCUKVAR, M.; TATARI, O. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United 150 States. Applied Energy, v. 150, p. 36–49, 15 jul. 2015.
  • [22] [21] XIE, J.-B. Evaluation of carbon footprint and energy input of internal combustion engine vehicles in China. Environmental Progress and Sustainable Energy, v. 42, n. 1, 2023.
  • [23] [22] JOSHI, A.; SHARMA, R.; BARAL, B. Comparative life cycle assessment of conventional combustion engine vehicle, battery electric vehicle and fuel cell electric vehicle in Nepal. Journal of Cleaner Production, v. 379, p. 134407, 2022. https://www.sciencedirect.com/science/article/pii/S0959652622039798
  • [24] [23] PATTERSON, J.; GURR, A.; MARION, F.; WILLIAMS, G. Strategic selection of future EV technology based on the carbon payback period. World Electric Vehicle Journal, v. 5, n. 4, p. 825–835, 2012.
  • [25] [24] YANG, Z.; WANG, B.; JIAO, K. Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China. Energy, v. 198, p. 117365, 1 maio 2020.
  • [26] [25] HIRZ, M.; NGUYEN, T. T. Life-Cycle CO2-Equivalent Emissions of Cars Driven by Conventional and Electric Propulsion Systems. World Electric Vehicle Journal 2022, Vol. 13, Page 61, v. 13, n. 4, p. 61, 31 mar. 2022. https://www.mdpi.com/20326653/13/4/61/htm"
Como citar:

SOARES, T. Z.; GAVIOLI, L.M.; LAMBIASI, L.N.; CESILLA, L.S.; PICOLI, J.F.; OSORIO, G.; "Avaliação de Ciclo de Vida do berço-ao-portão de veículos leves: Uma revisão da literatura", p. 266-273 . In: Anais do XXXI Simpósio Internacional de Engenharia Automotiva . São Paulo: Blucher, 2024.
ISSN 2357-7592, DOI 10.5151/simea2024-PAP52

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações