Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Biocombustíveis como atalho para a descarbonização da frota brasileira de veículos leves

Biofuels as a Shortcut to Brazilian Light Fleet Decarbonization

ROVAI, F. F. ; MADY, C. E. K. ;

Trabalho completo:

A descarbonização da frota de veículos leves enfrenta os desafios da eletrificação em todo o mundo em termos de custo dos veículos, tecnologia de baterias, infraestrutura de recarga e substituição da frotas. O Brasil oferece a possibilidade de descarbonização ao intensificar o uso de biocombustíveis associados à atual baixa intensidade de carbono da matriz de energia elétrica. Este trabalho aplica a análise do ciclo de vida para comparar a eficácia da descarbonização da frota brasileira de veículos leves, entre eletrificação e biocombustíveis, ajustando o consumo às condições reais de uso. A opção por veículos elétricos considera os extremos das categorias de veículos, subcompacto e utilitário esportivo, enquanto a opção de hibridização considera um carro grande, retratando a realidade do mercado brasileiro. A análise propõe o ajuste dos fatores de intensidade de carbono de acordo com o local de produção do veículo. A utilização em trajetos curtos, condição crítica para motores de combustão interna, baseia-se num modelo matemático inovador do impacto da fase fria no consumo de combustível. Os resultados indicam o tempo estimado para a efetiva vantagem da eletrificação na mitigação das emissões de gases de efeito estufa em ciclo urbano.

Trabalho completo:

The decarbonization of the light vehicle fleet faces the challenges of electrification around the world in terms of vehicle costs, battery technology, recharging infrastructure and fleet replacement. Brazil offers the possibility of decarbonization by intensifying the use of biofuels associated with the current low carbon intensity of the electrical energy matrix, both with similar carbon footprint. This work applies life cycle assessment to compare the decarbonization effectiveness of Brazilian light fleet of vehicles, between electrification and biofuels, adjusting energy consumption for real use conditions. The option for battery electric vehicles considers the extremes of the vehicle categories, subcompact and sport utility, while the hybridization option considers a large car, portraying the reality of the Brazilian market. The analysis proposes adjusting the carbon intensity factors of the vehicle production according to the production location. Use on short urban journeys, a critical condition for internal combustion engines, is based on an innovative mathematical model of the impact of the cold phase on fuel consumption. The results indicate the estimated time for the effective advantage of electrification in mitigating greenhouse gas emissions in urban cycle.

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2024-PAP31

Referências bibliográficas
  • [1] " ROBERTS, Andrew; BROOKS, Richard;
  • [2] SHIPWAY, Philip. Internal combustion engine
  • [3] cold-start efficiency: A review of the problem,
  • [4] causes and potential solutions. Energy conversion
  • [5] and management, v. 82, p. 327-350, 2014.
  • [6] 2. YE, Zhengmao; MOHAMADIAN, Habib. Model
  • [7] predictive control on wall wetting effect using
  • [8] Markov Chain Monte Carlo. In: 2013 IEEE Latin-
  • [9] America Conference on Communications. IEEE,
  • [10] 2013. p. 1-6.
  • [11] 3. BRUNETTI, Franco. Motores de Combustão
  • [12] Interna-Vol. 1. Editora Blucher, 20
  • [13] 4. HEYWOOD, John B. Internal combustion engine
  • [14] fundamentals. McGraw-Hill Education, 2018.
  • [15] 5. REIF, Konrad. Gasoline engine management.
  • [16] Springer Gabler, 2015.
  • [17] 6. GUILHERME, Roger et al. Choosing the Best Fuel
  • [18] for Flex Fuel Cars Daily Use. SAE Technical Paper,
  • [19] 2011.
  • [20] 7. ASSOCIAÇÃO BRASILEIRA DE NORMAS
  • [21] TÉCNICAS (ABNT). NBR6601: Veículos
  • [22] rodoviários automotores leves – Determinação de
  • [23] hidrocarbonetos, monóxido de carbono, óxidos de
  • [24] nitrogênio, dióxido de carbono e material
  • [25] particulado no gás de escapamento. Rio de Janeiro,
  • [26] 2021, 57p.
  • [27] 8. ASSOCIAÇÃO BRASILEIRA DE NORMAS
  • [28] TÉCNICAS (ABNT). NBR16567: Veículos
  • [29] rodoviários híbridos elétricos leves – Medição de
  • [30] emissão de escapamento e consumo de combustível
  • [31] e energia – Método de ensaio. Rio de Janeiro, 2016,
  • [32] 55p.
  • [33] 9. ASSOCIAÇÃO BRASILEIRA DE NORMAS
  • [34] TÉCNICAS (ABNT). NBR7024: Veículos
  • [35] rodoviários automotores leves – Medição do
  • [36] consumo de combustível – Método de ensaio. Rio
  • [37] de Janeiro, 2010, 13p.
  • [38] 10. ROVAI, Fernando Fusco. Estudo da
  • [39] descarbonização pela eletrificação de veículos
  • [40] leves. 2024. 1 recurso online (183 p.) Tese
  • [41] (doutorado) – Universidade Estadual de Campinas,
  • [42] Faculdade de Engenharia Mecânica, Campinas, SP.
  • [43] Available in:
  • [44] https://hdl.handle.net/20.500.12733/17413.
  • [45] Accessed in: 14 may 2024.
  • [46] 11. BRASIL. Lei nº 12.715, de 17 de dezembro de
  • [47] 2012. Programa de Incentivo à Inovação
  • [48] Tecnológica e Adensamento da Cadeia Produtiva
  • [49] de Veículos Automotores – Inovar-Auto.
  • [50] 12. BRASIL. Lei nº 13.755, de 10 de dezembro de
  • [51] 2018. Programa Rota 2030 – Mobilidade e
  • [52] Logística.
  • [53] 13. DE SALVO JUNIOR, Orlando; DE SOUZA, Maria
  • [54] Tereza Saraiva; DE ALMEIDA, Flávio G. Vaz.
  • [55] Implementation of new technologies for reducing
  • [56] fuel consumption of automobiles in Brazil
  • [57] according to the Brazilian Vehicle Labelling
  • [58] Programme. Energy, v. 233, p. 121132, 2021.
  • [59] 14. MOSQUIM, Rafael Fernandes; MADY, Carlos
  • [60] Eduardo Keutenedjian. Design, performance
  • [61] trends, and exergy efficiency of the Brazilian
  • [62] passenger vehicle fleet: 1970–2020. Journal of
  • [63] Cleaner Production, v. 290, p. 125788, 2021.
  • [64] 15. CONSELHO NACIONAL DO MEIO AMBIENTE
  • [65] (CONAMA). Resolução nº 492, de 20 de dezembro
  • [66] de 2018. Estabelece as Fases do PROCONVE L7 e
  • [67] PROCONVE L8 de exigências do Programa de
  • [68] Controle da Poluição do Ar por Veículos
  • [69] Automotores – PROCONVE para veículos
  • [70] automotores leves novos de uso rodoviário.
  • [71] 16. SKUZA, Adriana; JURECKI, Rafał; SZUMSKA,
  • [72] Emilia. INFLUENCE OF TRAFFIC
  • [73] CONDITIONS ON THE ENERGY
  • [74] CONSUMPTION OF AN ELECTRIC VEHICLE.
  • [75] Komunikácie, v. 25, n. 1, 2023.
  • [76] 17. MAMARIKAS, Sokratis et al. Traffic impacts on
  • [77] energy consumption of electric and conventional
  • [78] vehicles. Transportation Research Part D:
  • [79] Transport and Environment, v. 105, p. 103231,
  • [80] 2022.
  • [81] 18. ELLINGSEN, Linda Ager-Wick; SINGH, Bhawna;
  • [82] STRØMMAN, Anders Hammer. The size and
  • [83] range effect: lifecycle greenhouse gas emissions of
  • [84] electric vehicles. Environmental Research Letters,
  • [85] v. 11, n. 5, p. 054010, 2016.
  • [86] 19. BUBERGER, Johannes et al. Total CO2-equivalent
  • [87] life-cycle emissions from commercially available
  • [88] passenger cars. Renewable and Sustainable Energy
  • [89] Reviews, v. 159, p. 112158, 2022.
  • [90] 20. BIEKER, Georg. A global comparison of the lifecycle
  • [91] greenhouse gas emissions of combustion
  • [92] engine and electric passenger cars.
  • [93] communications, v. 49, n. 30, p. 847129-102, 2021.
  • [94] 21. TRANSPORT & ENVIRONMENT. How clean are
  • [95] electric cars? T&E’s analysis of electric car
  • [96] lifecycle CO2 emissions. Available in:
  • [97] https://www.transportenvironment.org/what-wedo/
  • [98] electriccars/how-clean-are-electric-cars.
  • [99] Accessed in: 11 jan. 2021.
  • [100] 22. KELLY, Jarod C. et al. Cradle-to-Grave Lifecycle
  • [101] Analysis of US Light-Duty Vehicle-Fuel Pathways:
  • [102] A Greenhouse Gas Emissions and Economic
  • [103] Assessment of Current (2020) and Future (2030-
  • [104] 2035) Technologies. Argonne National Laboratory
  • [105] (ANL), Argonne, IL (United States), 2023.
  • [106] 23. ROVAI, Fernando Fusco; DA CAL SEIXAS, Sônia
  • [107] Regina; MADY, Carlos Eduardo Keutenedjian.
  • [108] Regional energy policies for electrifying car fleets.
  • [109] Energy, v. 278, p. 127908, 2023.
  • [110] 24. PIPITONE, Emiliano; CALTABELLOTTA,
  • [111] Salvatore; OCCHIPINTI, Leonardo. A life cycle
  • [112] environmental impact comparison between
  • [113] traditional, hybrid, and electric vehicles in the
  • [114] European context. Sustainability, v. 13, n. 19, p.
  • [115] 10992, 2021.
  • [116] 25. WEISS, Malcolm A. et al. On the road in 2020-A
  • [117] life-cycle analysis of new automobile technologies.
  • [118] 2000.
  • [119] 26. SULLIVAN, John Lorenzo; BURNHAM, Andrew;
  • [120] WANG, Michael. Energy-consumption and
  • [121] carbon-emission analysis of vehicle and component
  • [122] manufacturing. Argonne National Lab.(ANL),
  • [123] Argonne, IL (United States), 2010.
  • [124] 27. EGESKOG, A. et al. Carbon Footprint Report.
  • [125] Battery Electric XC40 Recharge and the XC40 ICE.
  • [126] Volvo Cars-Sustainability Center, p. 1-42, 2020.
  • [127] Available in:
  • [128] https://www.volvocars.com/images/v/-
  • [129] /media/applications/pdpspecificationpage/my24/xc
  • [130] 40-electric/pdp/volvo-cars-lca-report-xc40.pdf.
  • [131] Accessed in: 10 oct. 2023.
  • [132] 28. EVRARD, E. et al. Carbon Footprint Report: Volvo
  • [133] C40 Recharge. Volvo: Gothenburg, Sweden, 2021.
  • [134] Available in:
  • [135] https://www.volvocars.com/images/v/-
  • [136] /media/marketassets/
  • [137] intl/applications/dotcom/pdf/c40/volvo-c40-
  • [138] recharge-lca-report.pdf. Accessed in: 10 oct. 2023.
  • [139] 29. SACCHI, R. et al. When, where and how can the
  • [140] electrification of passenger cars reduce greenhouse
  • [141] gas emissions?. Renewable and Sustainable Energy
  • [142] Reviews, v. 162, p. 112475, 2022.
  • [143] 30. HILL, Nikolas et al. Determining the
  • [144] environmental impacts of conventional and
  • [145] alternatively fuelled vehicles through LCA. Final
  • [146] Report for the European Commission, DG Climate
  • [147] Action, 2020.
  • [148] 31. HAO, Han et al. Comparing the life cycle
  • [149] Greenhouse Gas emissions from vehicle production
  • [150] in China and the USA: implications for targeting
  • [151] the reduction opportunities. Clean Technologies
  • [152] and Environmental Policy, v. 19, p. 1509-1522,
  • [153] 2017.
  • [154] 32. EMPRESA DE PESQUISA ENERGÉTICA (EPE).
  • [155] Balanço Energético Nacional. Available in:
  • [156] https://www.epe.gov.br/pt/publicacoes-dadosabertos/
  • [157] publicacoes. Accessed in: 10 oct. 2023.
  • [158] 33. GAUTO, Marcelo Antunes et al. Hybrid vigor:
  • [159] Why hybrids with sustainable biofuels are better
  • [160] than pure electric vehicles. Energy for Sustainable
  • [161] Development, v. 76, p. 101261, 2023.
  • [162] 34. WU, Ya; ZHANG, Li. Can the development of
  • [163] electric vehicles reduce the emission of air
  • [164] pollutants and greenhouse gases in developing
  • [165] countries?. Transportation Research Part D:
  • [166] Transport and Environment, v. 51, p. 129-145,
  • [167] 2017.
  • [168] 35. CARBON FOOTPRINT. Grid electricity
  • [169] conversion factors publications. Available in:
  • [170] https://www.carbonfootprint.com/international_ele
  • [171] ctricity_factors.html. Accessed in: 24 jan. 2024.
  • [172] 36. INTERNATIONAL ENERGY AGENCY (IEA).
  • [173] Carbon intensity of electricity generation in
  • [174] selected countries and regions, 2000–2020.
  • [175] Available in: https://www.iea.org/data-andstatistics/
  • [176] charts/carbon-intensity-of-electricitygeneration-
  • [177] in-selected-countries-and-regions-
  • [178] 2000-2020. Accessed in: 02 feb. 2024.
  • [179] 37. EUROPEAN ENVIRONMENT AGENCY (EEA).
  • [180] Greenhouse gas emission intensity of electricity
  • [181] generation. Available in:
  • [182] https://www.eea.europa.eu/data-andmaps/
  • [183] daviz/co2-emission-intensity-
  • [184] 14/download.table. Accessed in: 24 jan. 2024.
  • [185] 38. ANDERSSON, Öivind; BÖRJESSON, Pål. The
  • [186] greenhouse gas emissions of an electrified vehicle
  • [187] combined with renewable fuels: Life cycle
  • [188] assessment and policy implications. Applied
  • [189] Energy, v. 289, p. 116621, 2021.
  • [190] 39. TABRIZI, Mehrshad Kolahchian; BONALUMI,
  • [191] Davide; LOZZA, Giovanni Gustavo. Analyzing the
  • [192] global warming potential of the production and
  • [193] utilization of lithium-ion batteries with nickelmanganese-
  • [194] cobalt cathode chemistries in European
  • [195] Gigafactories. Energy, v. 288, p. 129622, 2024.
  • [196] 40. SUN, Xin et al. Life cycle assessment of lithium
  • [197] nickel cobalt manganese oxide (NCM) batteries for
  • [198] electric passenger vehicles. Journal of Cleaner
  • [199] Production, v. 273, p. 123006, 2020.
  • [200] 41. CARROS NA WEB. Available in:
  • [201] https://www.carrosnaweb.com.br/. Accessed in: 25
  • [202] mar. 2022.
  • [203] 42. PUSHEVS. Comparison of different EV batteries in
  • [204] 2020. Available in:
  • [205] https://pushevs.com/2020/04/04/comparison-ofdifferent-
  • [206] ev-batteries-in-2020/. Accessed in: 28
  • [207] mar. 2022.
  • [208] 43. INSTITUTO NACIONAL DE METROLOGIA,
  • [209] QUALIDADE E TECNOLOGIA (INMETRO).
  • [210] Veículos Automotivos (PBE veicular). Available
  • [211] in: https://www.gov.br/inmetro/ptbr/
  • [212] assuntos/avaliacao-da-conformidade/programabrasileiro-
  • [213] de-etiquetagem/tabelas-de-eficienciaenergetica/
  • [214] veiculos-automotivos-pbe-veicular.
  • [215] Accessed in: 17 jan. 2023.
  • [216] 44. BURTON, Tristan et al. A data-driven greenhouse
  • [217] gas emission rate analysis for vehicle comparisons.
  • [218] SAE International Journal of Electrified Vehicles,
  • [219] v. 12, n. 1, 2022.
  • [220] 45. INSTITUTO NACIONAL DE METROLOGIA,
  • [221] QUALIDADE E TECNOLOGIA (INMETRO).
  • [222] Portaria nº 16, de 7 de outubro de 2020. Proposta de
  • [223] Alteração dos Requisitos de Avaliação da
  • [224] Conformidade para Veículos Leves de Passageiros
  • [225] e Comerciais Leves, publicados pela Portaria
  • [226] Inmetro nº 377, de 29 de setembro de 2011.
  • [227] 46. INSTITUTO NACIONAL DE METROLOGIA,
  • [228] QUALIDADE E TECNOLOGIA (INMETRO).
  • [229] Portaria nº 169, de 3 de maio de 2023. Aprova os
  • [230] Requisitos de Avaliação da Conformidade para
  • [231] Veículos Leves de Passageiros e Comerciais Leves
  • [232] – Consolidado.
  • [233] 47. INSTITUTO NACIONAL DE METROLOGIA,
  • [234] QUALIDADE E TECNOLOGIA (INMETRO).
  • [235] Portaria nº 15, de 14 de janeiro de 2016.
  • [236] 48. AZHAGANATHAN, Gurusamy;
  • [237] BRAGADESHWARAN, Ashok. Critical review on
  • [238] recent progress of ethanol fuelled flex‐fuel engine
  • [239] characteristics. International Journal of Energy
  • [240] Research, v. 46, n. 5, p. 5646-5677, 2022.
  • [241] 49. ROVAI, Fernando Fusco; MADY, Carlos Eduardo
  • [242] Keutedjian. Exergetic analysis of an internal
  • [243] combustion engine running on E22 and E100.
  • [244] Revista de Engenharia Térmica, v. 21, n. 2, p. 43-
  • [245] 50, 2022.
  • [246] 50. BRASIL. Decreto nº 76.593, de 14 de novembro de
  • [247] 1975. Institui o Programa Nacional do Álcool e dá
  • [248] outras Providências. Available in:
  • [249] https://www2.camara.leg.br/legin/fed/decret/1970-
  • [250] 1979/decreto-76593-14-novembro-1975-425253-
  • [251] publicacaooriginal-1-pe.html. Accessed in: 10 oct.
  • [252] 2023.
  • [253] 51. MINISTÉRIO DA AGRICULTURA, PECUÁRIA
  • [254] E ABASTECIMENTO (MAPA). Portaria nº 75, de
  • [255] 6 de março de 2015.
  • [256] 52. MERA, Zamir et al. Comparação das Emissões de
  • [257] Gases de Efeito Estufa no Ciclo de Vida de Carros
  • [258] de Passeio a Combustão e Elétricos no Brasil.
  • [259] Relatório ICCT. October, 2023.
  • [260] 53. CUI, Dingsong et al. Battery electric vehicle usage
  • [261] pattern analysis driven by massive real-world data.
  • [262] Energy, v. 250, p. 123837, 2022.
  • [263] 54. FARIA, Marta V.; BAPTISTA, Patrícia C.;
  • [264] FARIAS, Tiago L. Electric vehicle parking in
  • [265] European and American context: Economic, energy
  • [266] and environmental analysis. Transportation
  • [267] Research Part A: Policy and Practice, v. 64, p. 110-
  • [268] 121, 2014.
  • [269] 55. AMATUNI, Levon et al. Does car sharing reduce
  • [270] greenhouse gas emissions? Assessing the modal
  • [271] shift and lifetime shift rebound effects from a life
  • [272] cycle perspective. Journal of Cleaner Production, v.
  • [273] 266, p. 121869, 2020.
  • [274] 56. AL-WREIKAT, Yazan; SERRANO, Clara;
  • [275] SODRÉ, José Ricardo. Effects of ambient
  • [276] temperature and trip characteristics on the energy
  • [277] consumption of an electric vehicle. Energy, v. 238,
  • [278] p. 122028, 2022.
  • [279] 57. KAWAMOTO, Ryuji et al. Estimation of CO2
  • [280] emissions of internal combustion engine vehicle
  • [281] and battery electric vehicle using LCA.
  • [282] Sustainability, v. 11, n. 9, p. 2690, 2019.
  • [283] 58. VAN MIERLO, Joeri; MESSAGIE, Maarten;
  • [284] RANGARAJU, Surendraprabu. Comparative
  • [285] environmental assessment of alternative fueled
  • [286] vehicles using a life cycle assessment.
  • [287] Transportation research procedia, v. 25, p. 3435-
  • [288] 3445, 2017.
  • [289] 59. DE OLIVEIRA GONÇALVES, Felipe et al.
  • [290] Thorough evaluation of the available light-duty
  • [291] engine technologies to reduce greenhouse gases
  • [292] emissions in Brazil. Journal of Cleaner Production,
  • [293] v. 358, p. 132051, 2022.
  • [294] 60. ORTOLAN, Murilo Artur et al. Análise de
  • [295] emissões no ciclo de vida: comparação direta entre
  • [296] veículos à combustão, utilizando combustíveis
  • [297] fósseis e renováveis, com veículos elétricos. XXX
  • [298] Simpósio Internacional de Engenharia Automotiva,
  • [299] Blucher Engineering Proceedings, v. 10, p.374-381,
  • [300] 2023.
  • [301] 61. REVISTA QUATRO RODAS. Durabilidade à
  • [302] prova: dirigimos um elétrico com 300.000 km
  • [303] rodados. Available in:
  • [304] https://quatrorodas.abril.com.br/noticias/durabilida
  • [305] de-a-prova-dirigimos-um-eletrico-com-300-000-
  • [306] km-rodados/. Accessed in: 31 jan. 2023.
  • [307] 62. ARGONNE NATIONAL LABORATORY.
  • [308] GREET model—the greenhouse gases, regulated
  • [309] emissions, and energy use in technologies model.
  • [310] Available in: https://greet.es.anl.gov/index.php.
  • [311] Accessed in: 23 sep. 2021.
  • [312] 63. ONAT, Nuri Cihat; KUCUKVAR, Murat;
  • [313] TATARI, Omer. Conventional, hybrid, plug-in
  • [314] hybrid or electric vehicles? State-based
  • [315] comparative carbon and energy footprint analysis in
  • [316] the United States. Applied Energy, v. 150, p. 36-49,
  • [317] 2015.
  • [318] 64. DE SOUZA, Lidiane La Picirelli et al. Comparative
  • [319] environmental life cycle assessment of
  • [320] conventional vehicles with different fuel options,
  • [321] plug-in hybrid and electric vehicles for a
  • [322] sustainable transportation system in Brazil. Journal
  • [323] of cleaner production, v. 203, p. 444-468, 2018.
  • [324] 65. TOMANIK, Eduardo; TOMANIK, Victor;
  • [325] MORAIS, Paulo. Use of tribological and AI models
  • [326] on vehicle emission tests to predict fuel savings
  • [327] through lower oil viscosity. SAE Technical Paper,
  • [328] 2022."
Como citar:

ROVAI, F. F.; MADY, C. E. K.; "Biocombustíveis como atalho para a descarbonização da frota brasileira de veículos leves", p. 180-191 . In: Anais do XXXI Simpósio Internacional de Engenharia Automotiva . São Paulo: Blucher, 2024.
ISSN 2357-7592, DOI 10.5151/simea2024-PAP31

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações