Full article - Open Access.

Idioma principal | Segundo idioma

CELLULOSE NANOFIBRILS - AN ANALYSIS OF THE ISOLATION METHODS

CELLULOSE NANOFIBRILS - AN ANALYSIS OF THE ISOLATION METHODS

Andrade, Marina Reis de ; Freitas, Leonardo Cardoso de ; Polkowski, Katielly Vianna ; Polkowski, Rodrigo Denizarte de Oliveira ;

Full article:

The systematic review utilized the PRISMA protocol to examine various methods of obtaining nanofibrils from plant fibers, aiming for ideal values of width, length, and crystallinity. A total of 13 articles were found, of which 3 were included due to their relevance, showcasing shorter processing times and larger dimensions in the nanofibrils. The studies employed sustainable approaches, such as the use of renewable deep eutectic solvents (DES) and p-toluenesulfonic acid (p-TsOH), followed by high-pressure homogenization and centrifugation. These methods are environmentally friendly and result in high-quality nanofibrils with excellent mechanical properties, making them versatile for various applications. Exploring techniques like ball milling could be a future industrially scalable option, reducing energy consumption while maintaining nanofibril quality.

Full article:

The systematic review utilized the PRISMA protocol to examine various methods of obtaining nanofibrils from plant fibers, aiming for ideal values of width, length, and crystallinity. A total of 13 articles were found, of which 3 were included due to their relevance, showcasing shorter processing times and larger dimensions in the nanofibrils. The studies employed sustainable approaches, such as the use of renewable deep eutectic solvents (DES) and p-toluenesulfonic acid (p-TsOH), followed by high-pressure homogenization and centrifugation. These methods are environmentally friendly and result in high-quality nanofibrils with excellent mechanical properties, making them versatile for various applications. Exploring techniques like ball milling could be a future industrially scalable option, reducing energy consumption while maintaining nanofibril quality.

Palavras-chave: Cellulose nanofibrils; Methods; Width; Length,

Palavras-chave: Cellulose nanofibrils; Methods; Width; Length,

DOI: 10.5151/siintec2023-306410

Referências bibliográficas
  • [1] "FEIYNMAN, R. P. Journal of Microelectromechanical Systems, v.1, n. 1, p. 60-
  • [2] 66, 199 DOI: https://doi.org/10.1007/s12045-011-0109-x.
  • [3] MALIK, S. et al. Molecules, v. 28, n. 2, 202 DOI:
  • [4] https://doi.org/10.3390/molecules28020661.
  • [5] Global Nanotechnology Market – Industry Trends and Forecast to 2030. Data
  • [6] Bridge Market Research. Available in:
  • [7] https://www.databridgemarketresearch.com/reports/global-nanotechnology-market
  • [8] Nanocellulose Market. Precedence Research. Available in:
  • [9] https://www.precedenceresearch.com/nanocellulosemarket#:~:text=The%20global%20nanocellulose%20market%20size,of%20around%
  • [10] 2035.2%25%20in%202021
  • [11] Nanotechnology Publications: Number and Annual Growth Rate of Nanoarticles (2000-2022). Nanoscience and Nanotechnology News: STATNANO. Available
  • [12] in: https://statnano.com/news
  • [13] RAMBARAN, T.; SCHIRHAGL, R. Nanoscale Adv, v. 4, pp. 3664-3675, 2022.
  • [14] DOI: 10.1039/D2NA00439A. PHANTHONG, P. et al. Carbon Resources Conversion, v. 1, i. 1, pp. 32-43,
  • [15] 2018. DOI: https://doi.org/10.1016/j.crcon.2018.05.004.
  • [16] CHIRAYIL, C. J. et al. Reviews on Advanced Materials Science, v. 37, pp. 20-
  • [17] 28, 2014.
  • [18] SACUI, I. A. et al. ACS Appl. Mater. Interfaces, v. 6, i. 9, pp. 6127–6138, 2014.
  • [19] DOI: https://doi.org/10.1021/am500359f.
  • [20] DONG, H. et al. Biomacromolecules, v. 14, i. 9, pp. 3338–3345, 2013. DOI:
  • [21] https://doi.org/10.1021/bm400993f.
  • [22] SHAMSEER L. et al. Research methods & Reporting, v. 349, 2015. DOI:
  • [23] 10.1136/bmj.g7647.
  • [24] Overview. AS Review. Available in:
  • [25] https://asreview.readthedocs.io/en/latest/simulation_overview.html
  • [26] MOHAMMADI, P. et al. Scientific Reports, v. 7, i. 11860, 2017. DOI:
  • [27] 10.1038/s41598-017-12107-x.
  • [28] NECHYPORCHUK, O. et al. Biomacromolecules, v. 17, i. 7, pp. 2311–2320,
  • [29] 2017. DOI: https://doi.org/10.1021/acs.biomac.6b00668.
  • [30] GUO, S. et al. Carbohydrate Polymers, v. 253, 2021. DOI:
  • [31] https://doi.org/10.1016/j.carbpol.2020.117223.
  • [32] LIU, W. et al. Journal of Cleaner Production, v. 384, 2023. DOI:
  • [33] https://doi.org/10.1016/j.jclepro.2022.135582.
  • [34] YU, W. et al. Industrial Crops and Products, v. 172, 2021. DOI:
  • [35] https://doi.org/10.1016/j.indcrop.2021.114009.
  • [36] HAN, X. et al. Carbohydrate Polymers, v. 298, 2022. DOI:
  • [37] https://doi.org/10.1016/j.carbpol.2022.120075.
  • [38] REN, Q. et al. Chemical Engineering Journal, v. 456, 2023. DOI:
  • [39] https://doi.org/10.1016/j.cej.2022.141115.
  • [40] XU, Y. et al. Chemical Engineering Journal, v. 462, 2023. DOI:
  • [41] https://doi.org/10.1016/j.cej.2023.142213.
  • [42] ZHANG, S. et al. International Journal of Biological Macromolecules, v. 216,
  • [43] 2022. DOI: https://doi.org/10.1016/j.ijbiomac.2022.07.005.
  • [44] SONG, L. et al. Carbohydrate Polymers, v. 259, 2021. DOI:
  • [45] https://doi.org/10.1016/j.carbpol.2021.117755.
  • [46] FONSECA, C. S. et al. Construction and Building Materials, v. 211, 2019. DOI:
  • [47] https://doi.org/10.1016/j.conbuildmat.2019.03.236.
  • [48] ZERGANE, H. et al. Industrial Crops and Products, v. 144, 2020. DOI:
  • [49] https://doi.org/10.1016/j.indcrop.2019.112044.
  • [50] FRANCO, T. S. et al. Colloids and Surfaces A: Physicochemical and
  • [51] Engineering Aspects, v. 586, 2020. DOI:
  • [52] https://doi.org/10.1016/j.colsurfa.2019.124263.
  • [53] DURMAZ, E. et al. Cellulose Chemistry and Technology, v. 55, 2021. DOI:
  • [54] 10.35812/CelluloseChemTechnol.2021.55.63
  • [55] SUKSRI, C. et al. Journal of Physics: Conference Series, v. 2175, 2021. DOI:
  • [56] 10.1088/1742-6596/2175/1/012039
  • [57] PARK, S. et al. Biotechnol Biofuels, v. 3, 2010. DOI: 10.1186/1754-6834-3-10
  • [58] HASAN, I. et al. Sustainable Chemistry Engineering, v. 11, 2023. DOI:
  • [59] 10.1021/acssuschemeng.2c06683
  • [60] LI, P. et al. Appl. Mater. Interfaces, v. 9, 2017. DOI:
  • [61] https://doi.org/10.1021/acsami.6b13625
  • [62] SAITO, T. et al. Biomacromolecules, v. 14, 2012. DOI: 10.1021/bm301674e."
Como citar:

Andrade, Marina Reis de ; Freitas, Leonardo Cardoso de ; Polkowski, Katielly Vianna ; Polkowski, Rodrigo Denizarte de Oliveira ; "CELLULOSE NANOFIBRILS - AN ANALYSIS OF THE ISOLATION METHODS", p. 533-540 . In: . São Paulo: Blucher, 2023.
ISSN 2357-7592, DOI 10.5151/siintec2023-306410

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações