Artigo completo - Open Access.

Idioma principal | Segundo idioma

Characterization of PETG honeycomb core applied in energy absorbers as protection to vehicle lateral collisions

Characterization of PETG honeycomb core applied in energy absorbers as protection to vehicle lateral collisions

Silva, Rita de Cassia ; Oliveira, Alessandro Borges de Sousa ; Castro, Gabriel Martins ;

Artigo completo:

During the last decades, highway authorities and motor vehicle manufacturers attempt to reduce the statistics of accidents in the world. However, the number of road traffic deaths continues to rise steadily, reaching 1.35 million in 2016. One of the accid

Artigo completo:

During the last decades, highway authorities and motor vehicle manufacturers attempt to reduce the statistics of accidents in the world. However, the number of road traffic deaths continues to rise steadily, reaching 1.35 million in 2016. One of the accid

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2021-PAP43

Referências bibliográficas
  • [1] Alghamdi, A., 200 Collapsible impact energy absorbers: an overview. Thin-walled structures, Elsevier, vol. 39, n. 2, pp. 189–213.
  • [2] Shindle, R. B., Mali, K. D., 2018. An overview on impact behavior and energy absorption of collapsible metallic and non-metallic energy absorbers used in  applications. IOP Conf. Ser.: Mater. Sci. Eng. 346 012054.
  • [3] Mantovani, S., Cavazzuti, M. and Torricelli, E., 2011. Lightweight crash energy absorber design using composite materials. Int. Conf. on Mech., Aut. And Aerosp. Eng.
  • [4] Ruzicka, M., Kulisek, V., Bogomolov, S. and Shánel, V., 201 Development of composite energy absorber. Procedia Engineering, vol.96, pp. 392-399.
  • [5] Guida, M., Marulo, F., Bruno, M., Montesarchio, B. and Orlando, S., 2018. Design validation of a composite crash absorber energy to an emergency landing. Adv. In Airc. And Spacecraft Sc., vol. 5 nº. 3, pp. 319-334.
  • [6] Thornton, P. H., Harwood, J. J. and Beardmore, P., 1985. Fiber-reinforced plastic composites for energy absorption purposes. Composites Science and Technology 24, pp. 275-298.
  • [7] Patel, J. and Stojko, S., 2010. Characterizing polyurethane foam as impact absorber in transport packages, Packaging, Transport, Storage & Security of Radioactive Material, 21:1, 25-30
  • [8] Zhang, X. and Cheng, G., 2007. A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns. Int, J. of Imp. Eng., vol. 34, pp. 1739-1752.
  • [9] Alavi Nia, A. and Parsapour, M., 2013. An investigation on the energy absorption characteristics of multi-cell square tubes. Thin-Walled Structures, 68, 26–34.
  • [10] Hussein, R. D., Ruan, D., Lu, G., Guillow, S. And Yoon, J. W., 2017. Crushing response of square aluminum tubes filled with polyurethane foam and aluminum honeycomb. Thin-Walled Structures, vol. 110, pp. 140-154.
  • [11] Baroutaji, A., Sajjia, M. And Olabi, A. G, 2017. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments. Thin-Walled Structures, vol. 118, n. April, p. 137–163. DOI: http://dx.doi.org/10.1016/j.tws.2017.05.018.
  • [12] Zarei, H. and Kroger, M., 2008. Optimum honeycomb filled crash absorber design. Materials and Design 29, pp. 193-204.
  • [13] Becker, H. and Locascio, L. E., 2002. Polymer microfluidic devices. Talanta, vol. 56, pp. 267-287.
  • [14] ASTM C365/C365M – 16, 2016. Standard test method for flatwise compressive properties of sandwich cores. American Society for Testing and Materials.
  • [15] ASTM D638 – 14, 2014. Standard test method for tensile properties of plastics. American Society for Testing and Materials.
  • [16] Chacón, J.M., Caminero, M. A., Garcia-Plaza, E. and Nunez, P. J., 2017. Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Doi: 10.1016/j.matdes.2017.03.065.
  • [17] Rodriguéz-Panes, A., Claver, J. and Camacho, A.M, 2018. The influence of manufacturing parmeters on the mechanical behavior of PLA and ABS pieces manufactured by FDM: a comparative analysis. Material, vol. 11, pp. 1333. DOI: 10.3390/ma1081333.
  • [18] Fernandez-Vicente, M., Calle, W., Ferrandiz, S. and Conejero, A., 2016. Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D printing and additive manufacturing, vol. 3, nº 3, pp.183-192. DOI: 10.1089/3dp.2015.0036.
  • [19] Rankouhi B., Javadpour S., Delfanian F. and Letcher T., 2016. Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J. Fail. Anal. Prev., vol.16, pp. 467–481.
  • [20] Zhao, H., Gary, G., 1998. Crushing behavior of aluminium honeycombs under impact loading. International Journal of Impact Engineering, vol. 21, n. 10, p. 827-836.
  • [21] Khan, M. K., Baig, T., Mirza, S., 2012. Experimental investigation of in-plane and out-of-plane crushing of aluminium honeycomb. Materials Science and Engineering A, vol. 539, p. 135-142. DOI: 10.1016/j.msea.2012.01.07
  • [22] Balaji, G. and Annamalai, K., 2018. Numerical investigation of honeycomb filled crash box for the effect of honeycomb's physical parameters on crashworthiness constants. International Journal of Crashworthiness, DOI:10.1080/13588265.2018.1424298.
  • [23] Meran, A. P., Toprak, T. and Mugan, A., 2014. Numerical and experimental study of crashworthiness parameters of honeycomb structures. Thin-Walled Structures, vol. 18, pp. 87-94.
  • [24] Jap, N. S. F. and colab., 2019. The effect of raster orientation on the static and fatigue properties of filament deposited ABS polymer. International Journal of Fatigue, vol. 124, n. February, p. 328-337. DOI: https://doi.org/10.1016/j.ijfatigue. 2019.02.042.
  • [25] Ziemian, C., Sharma, M., Ziemian, S., 2012. Anisotropic Mechanical Properties of ABS Parts Fabricated by Fused Deposition Modelling. Mechanical Engineering, Dr. Murat Gokcek (Ed.). ISBN: 978-953-51-0505-3.
  • [26] McFarland, R. K., 1963. Hexagonal Cell Structures Under Post-Buckling Axial Load. AIAA Journal, vol. 1, n. 6, p. 1380-1385. DOI: https://doi.org/10.2514/3.1798.
  • [27] Jin, T., Zhou, Z., Wang, Z., Wu, G., Shu, X., 2015. Experimental study on the effects of specimen in-plane on the mechanical behavior of aluminum hexagonal honeycombs. Materials Science and Engineering A, vol. 635, p. 23-35. DOI: 10.1016/j.msea.2015.03.053.
  • [28] Wierzbicki, T., 1983. Crushing Analysis of Metal Honeycombs. International Journal of Impact Engineering, vol. 1, n. 2, p. 157-174.
  • [29] Magee, C. L., Thornton, P. H., 1978. Design Considerations in Energy Absorption by Structural Collapse. SAE Technical Papers. DOI: https://doi.org/10.4271/780434.
Como citar:

Silva, Rita de Cassia; Oliveira, Alessandro Borges de Sousa; Castro, Gabriel Martins; "Characterization of PETG honeycomb core applied in energy absorbers as protection to vehicle lateral collisions", p. 177-183 . In: Anais do XXVIII SIMPÓSIO INTERNACIONAL DE ENGENHARIA AUTOMOTIVA. São Paulo: Blucher, 2021.
ISSN 2357-7592, DOI 10.5151/simea2021-PAP43

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações