Dezembro 2021 vol. 8 num. 4 - VII Simpósio Internacional de Inovação e Tecnologia
Original Article - Open Access.
COMPARAÇÃO ENTRE MÉTODOS DE CONTRIBUIÇÃO DE GRUPO PARA LÍQUIDOS IÔNICOS
"COMPARISON OF GROUP CONTRIBUTION METHODS FOR IONIC LIQUIDS"
Oliveira, Helter de Freitas ; Pessoa, Fernando Luiz Pellegrini ; Calixto, Ewerton Emmanuel da Silva ;
Original Article:
"Os líquidos iônicos (ILs) se destacam como um possível substituto verde aos solventes moleculares e pelas suas características como baixa pressão de vapor, versatilidade e estabilidades térmica e química. Entretanto, o estudo experimental de suas propriedades pode ser caro e demandar elevado poder computacional. Assim, os métodos de contribuição de grupo (GCM) surgem como uma ferramenta acessível na predição de propriedades. Foram selecionados vinte e cinco ILs para comparar os GCMs de Joback modificado (MJ) e Marrero-Gani (MG). Foram analisados o range de ação e a precisão da densidade calculada com a literatura. Com isso, o método MJ modificado se mostrou superior, já que foi capaz de descrever todos os ILs e alcançou um desvio médio da densidade 10.31 vezes menor que o MG."
Original Article:
Ionic liquids (ILs) stand out as a possible green substitute for the conventional solvents due to their characteristics such as low vapor pressure, versatility, and chemical stability. However, experimental studies are still expensive and molecular simulations demand high computational power. On the other hand, group contribution methods (GCMs) emerge as a viable tool for properties’ prediction. In this study, twenty-five ILs were selected, the properties were evaluated and compared using the modified Joback (MJ) and Marrero-Gani (MG) GCMs. The range of application was analyzed, and the accuracy of the calculated specific mass was evaluated using literature. The results show that the MJ method is superior, once it could describe all the selected ILs and with a mean specific mass deviation 10.31 times smaller than MG.
Palavras-chave: Contribição de grupo, Joback modificado, Marrero-Gani, Líquido iônico,
Palavras-chave: Group contribution, Modified Joback, Marrero-Gani, Ionic liquid,
DOI: 10.5151/siintec2021-206249
Referências bibliográficas
- [1] "1 ÁLVAREZ, Víctor Hugo. Termodinâmica e aplicações de líquidos iônicos. Tese de Doutorado. Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Química, 2010.
- [2] 2 WELTON, Tom. Ionic liquids: a brief history. Biophysical reviews, v. 10, n. 3, p. 691-706, 2018.
- [3] 3 FREEMANTLE, Michael. An introduction to ionic liquids. Royal Society of chemistry, 2010.
- [4] 4 MARRERO, Jorge; GANI, Rafiqul. Group-contribution based estimation of pure component properties. Fluid Phase Equilibria, v. 183, p. 183-208, 2001.
- [5] 5 VALDERRAMA, José O.; ROJAS, Roberto E. Critical properties of ionic liquids. Revisited. Industrial & Engineering Chemistry Research, v. 48, n. 14, p. 6890-6900,
- [6] 2009.
- [7] 6 SORIANO, Allan N.; DOMA JR, Bonifacio T.; LI, Meng-Hui. Density and refractive index measurements of 1-ethyl-3-methylimidazolium-based ionic liquids. Journal of the Taiwan Institute of Chemical Engineers, v. 41, n. 1, p. 115-121, 2010.
- [8] 7 FRÖBA, Andreas P.; KREMER, Heiko; LEIPERTZ, Alfred. Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4],[EMIM][NTf2],[EMIM][N
- [9] (CN) 2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure. The Journal of Physical Chemistry B, v. 112, n. 39, p. 12420-12430, 2008.
- [10] 8 RODRIGUEZ, Hector; BRENNECKE, Joan F. Temperature and composition dependence of the density and viscosity of binary mixtures of water+ ionic liquid. Journal of Chemical & Engineering Data, v. 51, n. 6, p. 2145-2155, 2006.
- [11] 9 SAFAROV, Javid et al. (p, ρ, T) data of 1-butyl-3-methylimidazolium hexafluorophosphate. The Journal of Chemical Thermodynamics, v. 141, p. 105954, 2020.
- [12] 10 MOKHTARANI, Babak et al. Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures. The Journal of Chemical Thermodynamics, v. 41, n. 12, p. 1432-1438, 2009.
- [13] 11 YOKOZEKI, A. et al. Physical and chemical absorptions of carbon dioxide in roomtemperature ionic liquids. The Journal of Physical Chemistry B, v. 112, n. 51, p. 16654-16663, 2008.
- [14] 12 TOT, Aleksandar et al. Kosmotropism of newly synthesized 1-butyl-3-methylimidazolium taurate ionic liquid: Experimental and computational study. The Journal of Chemical Thermodynamics, v. 94, p. 85-95, 2016.
- [15] 13 TONG, Jing et al. The surface tension, density and refractive index of amino acid ionic liquids:[C3mim][Gly] and [C4mim][Gly]. The Journal of Chemical Thermodynamics, v. 54, p. 352-357, 2012.
- [16] 14 GONZÁLEZ, Emilio J.; CALVAR, Noelia; MACEDO, Eugénia A. Osmotic coefficients and apparent molar volumes of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in alcohols. The Journal of Chemical Thermodynamics, v. 69, p. 93-100, 2014.
- [17] 15 SHI, Fengqiong et al. Tris (pentafluoroethyl) trifluorophosphate-basd ionic liquids as advantageous solid-phase micro-extraction coatings for the extraction of organophosphate esters in environmental waters. Journal of Chromatography A, v. 1447, p. 9-16, 2016.
- [18] 16 PEREIRO, Ana B. et al. Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence. The Journal of Chemical Thermodynamics, v. 39, n. 8, p. 1168-1175, 2007.
- [19] 17 YUNUS, Normawati M. et al. Thermophysical properties and CO2 absorption of ammonium-based protic ionic liquids containing acetate and butyrate anions. Processes, v. 7, n. 11, p. 820, 20
- [20] 18 ÁLVAREZ, Víctor H. et al. Brønsted ionic liquids for sustainable processes: synthesis and physical properties. Journal of Chemical & Engineering Data, v. 55, n. 2, p. 625- 632, 2010.
- [21] 19 NEVES, Catarina MSS et al. Thermophysical properties of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids. The Journal of Chemical Thermodynamics, v. 43, n. 6, p. 948-957, 2011.
- [22] 20 KILARU, Prem; BAKER, Gary A.; SCOVAZZO, Paul. Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: data and correlations. Journal of Chemical & Engineering Data, v. 52, n. 6, p. 2306-2314, 2007.
- [23] 21 GACIÑO, Félix M. et al. Volumetric behaviour of six ionic liquids from T=(278 to 398) K and up to 120 MPa. The Journal of Chemical Thermodynamics, v. 93, p. 24-33, 2016.
- [24] 22 SANMAMED, Y. A. et al. Experimental methodology for precise determination of density of RTILs as a function of temperature and pressure using vibrating tube densimeters. The Journal of Chemical Thermodynamics, v. 42, n. 4, p. 553-563, 2010.
- [25] 23 DE CASTRO, Carlos A. Nieto et al. Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2],[C4mim][dca],[C2mim][EtOSO3] and [Aliquat][dca]. Fluid Phase Equilibria, v. 294, n. 1-2, p. 157-179, 2010.
- [26] 24 ESPERANÇA, José MSS et al. Pressure− density− temperature (p− ρ− T) surface of [C6mim][NTf2]. Journal of Chemical & Engineering Data, v. 53, n. 3, p. 867-870, 2008.
- [27] 25 SANMAMED, Y. A. et al. Experimental methodology for precise determination of density of RTILs as a function of temperature and pressure using vibrating tube densimeters. The Journal of Chemical Thermodynamics, v. 42, n. 4, p. 553-563, 2010.
- [28] 26 HE, Ru-Hao et al. Solubility of hydrogen chloride in three 1-alkyl-3-methylimidazolium chloride ionic liquids in the pressure range (0 to 100) kPa and temperature range (298.15 to 363.15) K., v. 57, n. 11, p. 2936-2941, 2012."
Como citar:
Oliveira, Helter de Freitas; Pessoa, Fernando Luiz Pellegrini; Calixto, Ewerton Emmanuel da Silva; "COMPARAÇÃO ENTRE MÉTODOS DE CONTRIBUIÇÃO DE GRUPO PARA LÍQUIDOS IÔNICOS", p. 159-166 . In: VII International Symposium on Innovation and Technology.
São Paulo: Blucher,
2021.
ISSN 2357-7592,
DOI 10.5151/siintec2021-206249
últimos 30 dias | último ano | desde a publicação
downloads
visualizações
indexações