Article - Open Access.

Idioma principal | Segundo idioma

COMPOSIÇÃO QUÍMICA DA ÁGUA RESIDUAL DA AQUICULTURA (ANTES E APÓS CULTIVO COM ARTHROSPIRA PLATENSIS SP ) E EFICIÊNCIA DE REMOÇÃO DE NUTRIENTES

CHEMICAL COMPOSITION OF AQUACULTURE RESIDUAL WATER (BEFORE AND AFTER CULTIVATION WITH ARTHROSPIRA PLATENSIS SP) AND NUTRIENT REMOVAL EFFICIENCY

Borges, Ana Victória dos Santos ; Cardoso, Lucas Guimarães ; Duarte, Jessica Hartwig ; Costa, Jorge Alberto Vieira ; Assis, Denilson de Jesus ; Druzian, Janice Izabel ; Chinalia, Fabio Alexandre ; Galván, Karina Lizzeth Pedraza ; , ;

Article:

O objetivo foi produzir biomassa da Arthrospira Platensis pela reutilização e tratamento de águas residuárias da aquicultura. Os cultivos foram realizadas em fotobiorreatores (1L) com 100% de água residual de aquicultura suplementada com T-25, T-50, T-75. O tratamento com 25% atingiu uma taxa de remoção de 94,01% (Sulfatos), 93,84% (Fosfato), 96,77% (Bromo), 90,00 % (COD) e significativas taxas de remoção de nitrogênio (≥ 80%). Assim, o tratamento com 25% pode representar uma alternativa eficiente, barata e sustentável para o setor de aquicultura, reduzindo os impactos das descargas de efluentes.

Article:

The objective was to produce Arthrospira Platensis biomass by reusing and treating aquaculture wastewater. Cultures were performed in photobioreactors (1L) with 100% of residual aquaculture water supplemented with T-25, T-50, T-75. The 25% treatment achieved a removal rate of 94.01% (Sulfates), 93.84% (Phosphate), 96.77% (Bromine), 90.00% (COD) and significant nitrogen removal rates ( ≥ 80%). Thus, treatment with 25% may represent an efficient, cheap and sustainable alternative for the aquaculture sector, reducing the impacts of effluent discharges.

Palavras-chave: cianobactéria, tratamento, água residual,

Palavras-chave: cyanobacterium, treatment, wastewater,

DOI: 10.5151/siintec2019-101

Referências bibliográficas
  • [1] 1 Wuang, S. C. Khin, M. C. Chua, P. Q. D. Luo, Y. D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res, 15, 59–64.
  • [2] ² Ferreira, J. G. L. Falconer, J. Kittiwanich, L. Ross, C. Saurel, K. Wellman, C. B. Z. P. Suvanacha. (2015). Analysis of production and environmental effects of Nile tilapia and white shrimp culture in Thailand. Aquac. Res 447, 23–36.
  • [3] ³ Samuel-Fitwi, B. Sven Wuertz, J. P. Schroeder, C. S. (2012). Sustainability assessment tools to support aquaculture development. Aquac. Res. 32, 183-192.
  • [4] 4 Martins, A. P. Zambotti-Villela, L. Yokoya, N. S. Colepicol, P. (2018). Biotechnological potential of benthic marine algae collected along the Brazilian coast. Algal Res, 33, 316–327.
  • [5] 5 Huang, Y. Chen, Y. Xie, J. L. Huacai, W.C. (2016). Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp. Fuel, 183, 9-19.
  • [6] 6 Kuo, C. Chen, T. Lin, T. Kao, C. Lai, J. Chang, J. Lin, C. (2015). Cultivation of Chlorella sp., GD using piggery wastewater for biomass and lipid production. Bioresour. Technol, 194, 326–333.
  • [7] 7 Salama, E. Byong-Hun, J. B. Chang, W. S. Lee, S. Roh, H. Yang, I. (2017). Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. J. Clean. Prod, 168, 1017–1024.
  • [8] 7 Costa, J.A.V. Colla, L.M. Duarte Filho, P. Kabke, K. Weber, A. (2004). Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Ind Microbiol Biotechnol , 18, 603-607.
  • [9] 8 Kuo, C. Chen, T. Lin, T. Kao, C. Lai, J. Chang, J. Lin, C. (2015). Cultivation of Chlorella sp., GD using piggery wastewater for biomass and lipid production. Bioresour. Technol, 194, 326–333.
  • [10] 9 Daneshvar, E. Antikainen, L. Koutrac, E. Kornarosc, M. Bhatnagara, A. (2018). Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: Treatment of wastewater and lipid extraction. Bioresour. Technol, 255, 104–1
  • [11] 10 American Public Health Association. Standard Methods for the Examination of Water and Wastewater. 21 ed. Washington: APHA, 2005.
  • [12] 11 Ramsundar, P. Abhishek G, Singh P. Pillay, K. Bux, F. (2017). Evaluation of wate activated sludge as a potential nutrient source for cultivation of Chlorella sorokiniana. Algal Res, 28,108-117.
  • [13] 12 Muñoz, R. Guieysse, B. (2006). Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Res, 40, 2799 – 2815.
  • [14] 13 Jiang, Y. Zhu, Z. Hu, A. Lei, J. (2016). Wang Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii. Ecot, 25, 1417-1425.
  • [15] 14 Cruz, J.C.S. Iorio, M. Monciardini, P. Simone, M. Brunati, C. Gaspari, E. Maffioli S.I. Wellington, E. Sosio, M. Donadio. S. (2015). Microalgae for phosphorus removal and biomass production: a six species screen for dual‐purpose organisms. J N Prod, 78, 2642-2647.
  • [16] 15 Guo, Z. Liu, Y. Guo, H. Yan, S. Mu, J. (2013). Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. Int. J. Environ. Sci, 25, 85–88.
  • [17] 16 Malibari, R. Sayegh, F. Elazzazy, A.M. Baeshen, M.N. Dourou, M. Aggelis, G. (2018). Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from Red Sea e Jeddah. J. Clean. Prod, 198, 160-169.
  • [18] 17 Luo, Y. Le-Clech, P. Henderson, R. K. (2017). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Res, 24, 425–437
  • [19] 18 Alva, M. S. Pabella, V.M.L. Ledesm, M. T. O. Gómez, M. J. C. (2018). Carbon, nitrogen, and phosphorus removal, and lipid production by three saline microalgae grown in synthetic wastewater irradiated with different photon fluxes. Algal Res, 34, 97–103.
  • [20] 19 Markou, G. Chatzipavlidis, I. Georgakakis, D. (2012). Cultivation of Arthrospira (Spirulina platensis) in olive-oil mill wastewater treated with sodium hypochlorite. Bioresour. Technol, 112, 234–241.
  • [21] 20 Ji, Y. Hu, W. Li, X. Ma, G. Song, M. Pei, H. (2014). Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater. Bioresour. Technol, 152, 471–476
Como citar:

Borges, Ana Victória dos Santos; Cardoso, Lucas Guimarães; Duarte, Jessica Hartwig; Costa, Jorge Alberto Vieira; Assis, Denilson de Jesus; Druzian, Janice Izabel; Chinalia, Fabio Alexandre; Galván, Karina Lizzeth Pedraza; , ; "COMPOSIÇÃO QUÍMICA DA ÁGUA RESIDUAL DA AQUICULTURA (ANTES E APÓS CULTIVO COM ARTHROSPIRA PLATENSIS SP ) E EFICIÊNCIA DE REMOÇÃO DE NUTRIENTES", p. 809-815 . In: Anais do V Simpósio Internacional de Inovação e Tecnologia. São Paulo: Blucher, 2019.
ISSN 2357-7592, DOI 10.5151/siintec2019-101

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações