Full Article - Open Access.

Idioma principal

Critical pitting temperature on low temperature plasma carburized AISI 410 stainless steel

Garcia, M. V. ; Berton, M. A. C. ; Ferreira, O. L. S. ; Cardoso, R. P. ;

Full Article:

Low-temperature plasma assisted carburizing (LTPC) is an efficient method to provide improvement on surface mechanical properties of stainless steels, with a consequent improvement on its tribological behavior. The application of this treatment on martensitic stainless steels is recent and there are many aspects that deserves attention, including the treated surface corrosion resistance. Among various electrochemical techniques, critical pitting temperature (CPT) has been widely used to characterize stainless steels corrosion resistance due to its good reproducibility, sensitivity and efficiency. In this context, the purpose of this work was to apply LTPC thermochemical treatment on AISI 410 martensitic stainless steel, aiming to determine the influence of the treatment temperature in the treated surface microstructure, hardness and corrosion resistance employing TCP technique. The carburizing treatments were carried out at 300, 350, 400 and 450 °C during 6 hours, using a gas mixture containing 99.5% of (80% H2 + 20% Ar) + 0.5% de CH4 (in volume). The gas mixture flow rate and pressure were fixed at 1.67 x 10-6 Nm3s-1 and 400 Pa. The treated samples were characterized using X-ray diffractometry, optical microscopy, and microhardness measurements. The treated surfaces corrosion resistance was evaluated using OCP and CPT measurements. For the treated surfaces an increase in hardness and a displacement of XRD martensite peaks was observed, indicating that the carburizing processes were succeeded. The electrochemical tests have shown that the untreated sample presented higher corrosion rate after pitting formation. Nevertheless, for temperatures below CPT it presented the lowest current density. The treatment temperature that provided the best corrosion behavior was that treated at 350 °C, with corrosion current similar to the untreated sample before CPT. Results also indicated that there is a direct relationship between the LTPC temperature and the treated surface properties, especially corrosion resistance.

Full Article:

Palavras-chave: Plasma assisted carburizing, Low-temperature carburizing, AISI 410 martensitic stainless steel, Corrosion resistance, Critical pitting temperature,

Palavras-chave: ,

DOI: 10.5151/chempro-s3ie2016-05

Referências bibliográficas
  • [1] ASTM. Heat Treating of Stainless Steels. In; ASM International. ASTM Handbook; heat treating, v. 4, 199
  • [2] BRIGHAM, R.J. Effect of Cr on the pitting resistance of austenitic stainless steels. In: Corrosion Science, 1975. v. 15, p. 579- 580.
  • [3] BURSTEIN,G.T.; PITORIUS,P.C.; MATTIN, S.P. The nucleation and growth of corrosion pits on stainless steel. In: Corrosion Science, 199 v. 35, n.1-4, p. 57-62.
  • [4] CORENGIA, P.; YBARRA, G.; MOINA, C.; CABO, A.; BROITMAN, E. Microstructure and corrosion behavior of DC-pulsed plasma nitride AISI 410 martensitic stainless steel. In: Surface and Coatings Technology, 200 v. 187, p. 63–69.
  • [5] DENG, B.; WANG, Z.; JIANG, Y.; WANG, H.; GAO, J.; LI, J. Evaluation of localized corrosion in duplex stainless steel aged at 850ºC with critical pitting temperature measurement. In: Electrochimica Acta, 2009. v. 54, p. 2790-2794.
  • [6] ERNST, F.; CAO, Y.; MICHAL, G.M.; HEUER, A.H. Carbide precipitation in austenitic stainless steel carburized at low temperature. In: Acta Materialia, 2007. v. 55, p. 1895–190
  • [7] ERNST, P.; NEWMAN, R. Explanationoftheeffectof high chloride concentration on the critical pitting temperature of stainless steel. In:Corrosion Science, 200 p. 3705–3715.
  • [8] GOBBI, S.J.; SANTOS, C.B.; JACQUES, R.; TEISCHMANN, L.; STROHECKER, T.R.; ZOPPASFERREIRA, J. Endurecimento superficial dos aços AISI 316L e AISI 304 por cementação a plasma em baixas temperaturas. In: 17º CBECIMat – CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIA DOS MATERIAIS, Foz do Iguaçu, PR, Brasil, 2006.
  • [9] HEUER, A.H.; KAHN, A.; O’DONNELL, L.J.; ERNST, F.; MICHAL, G.M.; RAYNE, R.J.; MARTIN, F.J.; NATISHAN, P.M. Carburization-Enhanced Passivity of PH13-8 Mo: A Precipitation-Hardened Martensitic Stainless Steel. In: Electrochemical and Solid-State Letters, 2010. v. 13 (12), p. C37–C3
  • [10] LI, C.X.; BELL, T. A comparative study of low temperature plasma nitriding, carburising and nitrocarburising of AISI 410 martensitic stainless steel. In: Materials Science and Technology, 2007. v. 23, n. 3, p. 355–361.
  • [11] LI, C.X.; BELL, T. Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions. In: Corrosion Science, 2006. v. 48, p. 2036-2049.
  • [12] LIU, J.; ZHANG, T.; MENG, G.; SHAO, Y.; WANG, F. Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation. In: Corrosion Science, 2015. v. 91, p. 232-244.
  • [13] PARDO, A.; MERINO, M.; COY, A.; VIEJO, F.; ARRABAL, R.; MATYKINA, E. Pitting corrosion behaviour of austenitic stainless steels - combining effects of Mn and Mo additions. In: Corrosion Science, 2008. v. 50, p. 1796–1806.
  • [14] SCHEUER, C.J.; CARDOSO, R.P.; PEREIRA, R.; MAFRA, M.; BRUNATTO, S. F. Low temperature plasma carburizing of martensitic stainless steel. In: Materials Science and Engineering, 2012. A. 539, p. 369-372.
  • [15] SCHEUER, Cristiano José. Comportamento tribológico e resistência à corrosão do aço inoxidável martensítico AISI 420 cementado por plasma a baixa temperatura. Tese (Doutorado em engenharia mecânica) - Universidade Federal do Paraná, Curitiba, 20
  • [16] SOUZA, R.M.; IGNAT, M.; PINEDO, C.E.; TSCHIPTSCHIN, A.P. Structure and properties of low temperature plasma carburized austenitic stainless steels. In: Surface and Coatings Technology, 2009. v. 204, pp. 1102–1105.
  • [17] SUCHENTRUNK, R.; STAUDIGL, G.; JONKE, D.; FUESSER, H.J. Industrial applications for plasma processes-examples and trends. In: Surface and Coatings Technology, 1997. v. 97, p. 1–9.
  • [18] SUN, Y. Kinetics of low temperature plasma carburizing of austenitic stainless steels. In: Journal of Materials Processing Technology, 2005. v. 168, p. 189-194.
  • [19] SUN, Y. Response of cast austenitic stainless steel to low temperature plasma carburizing. In: Materials and Design, 2009. v. 30, p. 1377-1380.
  • [20] VANDER VOORT, G. F.; JAMES, H. M. Wrought Stainless Steels, in ASM Handbook – Metallography and Microstructures, Ed. ASM International, p. 279‑296, 1992.
  • [21] ZAKERI, M.; NAKHAIE, M.; NAGHIZADEH, M.; MOAYED, M.H. The effect of dichromate íon on the pitting corrosion of AISI 316L satinless steel. Part I: Critical pitting temperature.In: Corrosion Science, 2015. v. 93, p. 234-241.
  • [22] ZHANG, T.; WANG, D.; SHAO, Y.; MENG, G.; WANG, F. A new criterion to determine the critical pitting temperature (CPT) based on electrochemical noise measurement. In: Corrosion Science, 2012. v. 58, p. 202-210.
Como citar:

Garcia, M. V.; Berton, M. A. C.; Ferreira, O. L. S.; Cardoso, R. P.; "Critical pitting temperature on low temperature plasma carburized AISI 410 stainless steel", p. 57-69 . In: Proceedings of 2nd International Seminar on Industrial Innovation in Electrochemistry . São Paulo: Blucher, 2016. São Paulo: Blucher, 2016.
ISSN 2318-4043, DOI 10.5151/chempro-s3ie2016-05

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações