Artigo completo - Open Access.

Idioma principal | Segundo idioma

Desenvolvimento de um modelo de dinâmica planar para veículos

Development of a planar dynamics model for vehicles

Miranda, Matheus Henrique Rodrigues ; Silva, Ludmila Corrêa de Alkmin ; Eckert, Jony Javorski ; Lourenço, Maria Augusta de Menezes ; Silva, Fabrício Leonardo ; Dedini, Franco Giuseppe ;

Artigo completo:

A dinâmica veicular analisa as interações entre o veículo, o ambiente e o estilo / perfil de condução aplicado. Os pneus são um dos componentes mais importantes, pois todas as forças de tração e frenagem atuam diretamente na interface de contato entre o p

Artigo completo:

Vehicle dynamics analyze the interactions among the vehicle, environment and driving style/profile applied. The tires are one of the most important components because of all traction and braking forces are acting directly in the contact between the tire a

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2021-PAP114

Referências bibliográficas
  • [1] LIE, A.; TINGVALL, C.; KRAFT, M.; KULLGREN, A. The Effectiveness of Electronic Stability Control (ESC) in Reducing Real Life Crashes and Injuries. Traffic Injury Prevention, 7:1, p. 38-43, 2006.
  • [2] DANG, J. N. Preliminary results analyzing the effectiveness of electronic stability control (ESC) systems. U.S. Department of Transportation, Washington, DC, 2004.
  • [3] RILL, G. Road Vehicle Dynamics: Fundamentals and Modeling. Boca Raton: CRC PRESS, 2012.
  • [4] RAY, L.R. Nonlinear tire force estimation and road friction identification: Simulation and experiments. Automatica, 33(10), p. 1819-1833, 1997.
  • [5] SAMADI, B.; KAZEMI, R.; NIKRAVESH, K. Y.; KABGANIAN, M. Real-time estimation of vehicle state and tire-road friction forces. Proceedings of the 2001 American Control Conference. IEEE, vol. 5, 2001.
  • [6] HSU, Y. H. J.; LAWS, S.; GADDA, C.D.; GERDES, J.C. A method to estimate the friction coefficient and tire slip angle using steering torque. ASME International Mechanical Engineering Congress and Exposition, vol. 47683, p. 515-524, 200
  • [7] CHO, W.; YOON, J.; YIM, S.; KOO, B.; YI, K. Estimation of tire forces for application to vehicle stability control. IEEE Transactions on Vehicular Technology, 59(2), p. 638-649, 2009.
  • [8] BAFFET, G.; CHARARA, A.; LECHNER, D. Estimation of vehicle sideslip, tire force and wheel cornering stiffness. Control Engineering Practice, 17(11), p. 1255-1264, 2009.
  • [9] DOUMIATI, M.; VICTORINO, A.C.; CHARARA, A.; LECHNER, D. Onboard real-time estimation of vehicle lateral tire–road forces and sideslip angle. IEEE/ASME Transactions on Mechatronics, 16(4), p. 601-614, 2010.
  • [10] PACEJKA, H.B. Tire and Vehicle Dynamics. 3rd ed. Butterworth-Heinemann, 2012.
  • [11] NAM, K.; FUJIMOTO, H.; HORI, Y. Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors. IEEE Transactions on Vehicular Technology, 61(5), p. 1972-1985, 2012.
  • [12] JIN, X.; YIN, G. Estimation of lateral tire–road forces and sideslip angle for electric vehicles using interacting multiple model filter approach. Journal of the Franklin Institute, 352(2), p. 686-707, 2015.
  • [13] ANDERSSON, M.; BRUZELIUS, F.; CASSELGREN, J.; HJORT, M.; LÖFVING, S.; OLSSON, G.; YNGVE, S. Road friction estimation, Part II. IVSS project report, 2010.
  • [14] LI, L.; FEI-YUE, W.; QUNZHI, Z. Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control. IEEE Transactions on Intelligent Transportation Systems, vol. 7, p. 1–19, 2006.
  • [15] WANG, R.; WANG, J. Tire–road friction coefficient and tire cornering stiffness estimation based on longitudinal tire force difference generation. Control Engineering Practice, vol. 21, p. 65-75, 2013.
  • [16] SINGH, K. B.; TAHERI, S. Estimation of tire–road friction coefficient and its application in chassis control systems, Systems Science & Control Engineering, 3:1, p. 39-61, 2015.
  • [17] MASHADI, B.; MOUSAVI, H.; MONTAZERI, M. Obtaining relations between the Magic Formula coefficients and tire physical properties. International Journal of Automotive Engineering, vol. 5, 2015.
  • [18] RAO, K. N.; KUMAR, R. K.; MUKHOPADHYAY, R.; MISRA, R. A study of the relationship between Magic Formula coefficients and tyre design attributes through finite element analysis. Vehicle System Dynamics, vol. 44, p. 33 – 63, 2006.
  • [19] HÜSEMANN, T.; WÖHRMANN, M. The impact of tire measurement data on tire modelling and vehicle dynamics analysis. Tire Sci Technol, vol. 38, p. 155–180, 2010.
  • [20] ARAT, M. A.; SINGH, K. B.; TAHERI, S. (2014). An intelligent tire based adaptive vehicle stability controller. International Journal of Vehicle Design, 65(2/3), 118–143.
  • [21] LEE, C.; HEDRICK, K.; YI, K. Real-time slip-based estimation of maximum tire-road friction coefficient. IEEE/ASME Transactions on Mechatronics, vol. 9, no. 2, p. 454-458, 2004.
  • [22] SANTICIOLLI, F. M. Parameterization of Tire Models applied to Small Tires. 2018. 151p. Thesis (Doctorate) - University of Campinas, Campinas, 2018 (in Portuguese).
  • [23] GIPSER, M. H. R.; LUNGNER, P. Dynamical Tire Forces Response to Road Unevennesses. Proceeding of 2nd Colloquium on Tire Models for Vehicle Analysis, 1997.
  • [24] FTire - Flexible Structure Tire Model Modelization and Parameter Specification. Cosin Scientific Software. Germany, 2020.
  • [25] SILVA, L. C. A. Identification and simulations of tire behavior aimed at implementing control in motorized wheelchairs. 2011. 153p. Thesis (Doctorate) - University of Campinas, Campinas, 2011 (in Portuguese).
  • [26] MENDONÇA, D. A.; SANTICIOLLI, F. M.; SILVA, L. C. A.; ECKERT, J. J.; DEDINI, F. G. Parameterization of Tire Model for Light Weight Vehicle Regarding the Combined Slip. International Congress of Mechanical Engineering, 25., 2019, Uberlândia.
  • [27] CASTELLVÍ, M. C. Benchmark of tyre models for mechatronic application. 2011. 91f. Master's Dissertation. University of Cranfield, Cranfield, 2011.
  • [28] BAKKER, E.; PACEJKA, H.B.et al. A new tire model with an application in vehicle dynamics studies. 4th Auto technologies Conference, Monte Carlo. SAE 890087, p.83-95, 1989.
  • [29] GENTA, G. Motor Vehicle Dynamics: Modeling and Simulation. Vol. 43. World Scientific. 1997.
  • [30] GILLESPIE, T. D. Fundamentals of vehicle dynamics. Society of Automotive Engineers – SAE, Warrendale, PA, USA, 1992.
  • [31] JAZAR, R. N. Vehicle dynamics: Theory and applications. Springer Science+ Business Media, New York, NY, USA: Springer, 2008
Como citar:

Miranda, Matheus Henrique Rodrigues; Silva, Ludmila Corrêa de Alkmin; Eckert, Jony Javorski; Lourenço, Maria Augusta de Menezes; Silva, Fabrício Leonardo; Dedini, Franco Giuseppe; "Desenvolvimento de um modelo de dinâmica planar para veículos", p. 463-474 . In: Anais do XXVIII SIMPÓSIO INTERNACIONAL DE ENGENHARIA AUTOMOTIVA. São Paulo: Blucher, 2021.
ISSN 2357-7592, DOI 10.5151/simea2021-PAP114

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações