Full Article - Open Access.

Idioma principal

DETERMINATION OF THE INITIATION OF DELAMINATION IN FIBER COMPOSITES

Simon*, J.-W. ; Stier, B. ; Reese, S. ;

Full Article:

Predicting the initiation of delamination is essential for the design of composite structures, because delamination is a major failure mode of layered composites. The according delamination onset criteria can be evaluated on the basis of stress-strength relations, which requires an accurate representation of the through-the-thickness stress distribution, which is delicate for thin shell-like structures. Thus, in this paper, a solid-shell finite element is utilized, which allows for incorporating a fully three-dimensional, anisotropic, micromechanically motivated material model, still being suited for application to thin structures. Moreover, locking phenomena are cured by using both the EAS and the ANS concept, and numerical efficiency is ensured through reduced integration.

Full Article:

Palavras-chave: Fiber-reinforced composite, Finite element technology, Solid-shell concept, Enhanced strain formulation, Reduced integration.,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18367

Referências bibliográficas
  • [1] R. Alves de Sousa, R. Cardoso, R. Valente, J. Yoon, J. Gracio, R. Natal Jorge, “A new one-point quadrature enhanced assumed strain (EAS) solid shell element with multiple integration points along thickness–Part II: Nonlinear applications”, Int J Numer Methods Engng, 67, 160–188, 2006.
  • [2] C. Balzani, W. Wagner, “An interface element for the simulatino of delamination in unidirectional fiber-reinforced composite laminates”, Eng Fract Mech, 75, 2597–2615, 2008.
  • [3] M. Bischoff, E. Ramm, “Shear deformable shell elements for large strains and rotations”, Int J Numer Methods Engng, 40, 4427–4449, 1997.
  • [4] J. Bonet, A. Burton, “A simple, orthotropic transversely isotropic hyperelastic constitutive equation for large strain computations”, Comput Methods Appl Mech Engrg, 162, 151–164, 1998.
  • [5] P.P. Camanho, F.L. Matthews, “Delamination onset prediction in mechanically fastened joints”, J Compos Mater, 33, 906–927, 1999.
  • [6] R. Cardoso, J. Yoon, “One point quadrature shell elements with through-thickness stretch”, Comput Methods Appl Mech Engrg, 194, 1161–1199, 2005.
  • [7] R. Cardoso, J. Yoon, M. Mahardika, S. Choudhry, R. Alves de Sousa, R. Valente, “Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements”, Int J Numer Methods Engng, 75, 156–187, 2008.
  • [8] M.V. Cid Alfaro, A.S.J. Suiker, R. de Borst, J.J.C. Remmers, “Analysis of fracture and delamination in laminates using 3D numerical modelling”, Eng Fract Mech, 76, 761– 780, 2009.
  • [9] C.G. Davila, E.R. Johnson, “Analysis of delamination initiation in postbuckled droppedply laminates”, AIAA J, 31, 721–727, 1993.
  • [10] R. de Borst, J.J.C. Remmers, “Computational modelling of delamination”, Compos Sci Technol, 66, 713–722, 2006.
  • [11] Z. Hashin, A. Rotem, “A fatigue failure criterion for fiber reinforced materials”, J Compos Mater, 7, 448–464, 1973.
  • [12] G. Holzapfel, R. Eberlein, P. Wriggers, H. Weizsäcker, “A new axisymmetrical membrane element for anisotropic, finite strain analysis of arteries”, Commun Numer Methods Engng, 12, 507–517, 1996.
  • [13] D. Kim, K. Bathe, “A 4-node 3D-shell element to model shell surface tractions and incompressible behavior”, Comp Andamp; Struct, 86, 2027–2041, 2008.
  • [14] K. Kim, G. Liu, S. Han, “A resultant 8-node solid-shell element for geometrically nonlinear analysis”, Comput Mech, 35, 315–331, 2005.
  • [15] S. Klinkel, F. Gruttmann, W. Wagner, “A robust nonlinear solid-shell element based on a mixed variational formulation”, Comput Methods Appl Mech Engrg, 195, 179–201, 2006.
  • [16] S. Klinkel, F. Gruttmann, W. Wagner, “A mixed shell formulation accounting for thickness strains and finite strain 3D material models”, Int J Numer Methods Engng, 74, 945–970, 2008.
  • [17] I. Kreja, “A literature review on computational models for laminated composite and sandwich panels”, Cent Eur J Eng, 1(1), 59–80, 2011.
  • [18] R. Krueger, “Virtual crack closure technique: History, approach, and applications”, Appl Mech Rev, 57 (2), 109–143, 2004.
  • [19] S. Liu, “Quasi-impact damage initiation and growth of thick-section and toughened composite materials”, Int J Solids Andamp; Struct, 31, 3079–3098, 1999.
  • [20] P. Liu, J. Zheng, “Recent developments on damage modeling and finite element analysis for composite laminates: A review”, Mater Andamp; Design, 31(8), 3825–3834, 2010.
  • [21] E. Marklund, J. Varna, “Micromechanical modelling of wood fiber composites”, Plast Rubber Compos, 38(2–4), 118–123, 2009.
  • [22] L.Mishnaevsky Jr., H. Qing, “Micromechanical modelling of mechanical behaviour and strength of wood: State-of-the-art review”, Comp Mater Sci, 44, 363–370, 2008.
  • [23] R. Moreira, R. Alves de Sousa, R. Valente, “A solid-shell layerwise finite element for non-linear geometric and material analysis”, Compos Struct, 92(6), 1517–1523, 2010.
  • [24] T.K. O’Brien, “Interlaminar fracture toughness: The long and winding road to standardization”, Composites Part B, 29 (1), 57–62, 1998.
  • [25] K. Rah, W. Van Paepegem, A. Habraken, R. Alves de Sousa, R. Valente, “Evaluation of different advanced finite element concepts for detailed stress analysis of laminated composite structures”, Int J Mater Form, 2(1), 943–947, 2009.
  • [26] S. Reese, “Meso-macro modelling of fiber-reinforced rubber-like composites exhibiting large elastoplastic deformation”, Int J Solids Andamp; Struct, 40, 951–980, 2003.
  • [27] S. Reese, “A large deformation solid-shell concept based on reduced integration with hourglass stabilization”, Int J Numer Methods Engng, 69, 1671–1716, 2007.
  • [28] T. Roy, P. Manikandan, D. Chakraborty, “Improved shell finite element for piezothermoelastic analysis of smart fiber reinforced composite structures”, Finite Elem Anal Des, 46(9), 710–720, 2010.
  • [29] M.Rüter, E. Stein, “Analysis, finite element computation and error estimation in transversal isotropic nearly incompressible finite elasticity”, Comput Methods ApplMech Engrg, 190, 519–541, 2000.
  • [30] M. Schwarze, S. Reese, “A reduced integration solid-shell element based on the EAS and the ANS concept–geometrically linear problems”, Int J Numer Methods Engng, 80, 1322–1355, 2009.
  • [31] M. Schwarze, S. Reese, “A reduced integration solid-shell finite element based on the EAS and the ANS concept - large deformation problems”, Int J Numer Methods Engng, 85, 289–329, 2011.
  • [32] M. Schwarze, I. Vladimirov, S. Reese, “Sheet metal forming and springback simulation by means of a new reduced integration solid-shell finite element technology”, Comput Methods Appl Mech Engrg, 200, 454–476, 2011.
  • [33] B. Svendsen, “On the representation of constitutive relations using structure tensors”, Int J Engng Sci, 32, 1889–1892, 1994.
  • [34] X. Tan, L. Vu-Quoc, “Efficient and accurate multilayer solid-shell element: Non-linear materials at finite strain”, Int J Numer Methods Engng, 63, 2124–2170, 2005.
  • [35] Te Tay, “Characterization and analysis of delamination fracture in composites: An overview of developments rom 1990 to 2001”, Appl Mech Rev, 56 (1), 1–32, 2003.
  • [36] A. Turon, P.P. Camanho, J. Costa, C.G. Davila, “A damage model for the simulation of delamination in advanced composites under variable-mode loading”, Mech Mater, 38, 1072–1089, 2006.
  • [37] R. Valente, R. Alves de Sousa, R. Natal Jorge, “An enhanced strain 3D element for large deformation elastoplastic thin shell applications”, Comput Mech, 34, 38–52, 2004.
  • [38] J. Weiss, B. Maker, S. Govindjee, “Finite element implementation of incompressible, transversely isotropic hyperelasticity”, Comput Methods Appl Mech Engrg, 135, 107– 128, 1996.
  • [39] C. Whang, H. Zhang, G. Shi, “3D Finite element simulatin of impact damage of laminated plates using solid-shell interface elements”, Appl Mech Mater, 130-134, 766–770, 2012.
  • [40] L.-Q. Yao, L. Lu, “An Electric Node Concept for Solid-Shell Elements for Laminate Composite Piezoelectric Structures”, ASME J Appl Mech, 72, 35–43, 2005.
  • [41] L. Ye, “Role of matrix resin in delamination onset and growth in composite laminates”, Compos Sci Technol, 33 (4), 257–277, 1988.
  • [42] Z. Zou, S.R. Reid, S. Li, P.D. Soden, “Modelling interlaminar and intralaminar damage in filament wound pipes under quasi-static indentation”, J Compos Mater, 36, 477–499, 2002.
Como citar:

Simon*, J.-W.; Stier, B.; Reese, S.; "DETERMINATION OF THE INITIATION OF DELAMINATION IN FIBER COMPOSITES", p. 1304-1318 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18367

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações