Artigo - Open Access.

Idioma principal | Segundo idioma

Digitally Fabricating Expandable Steel Structures Using Kirigami Patterns

-

Danesh Zand, Foroozan ; Baghi, Ali ; Kalantari, Saleh ;

Artigo:

This article presents a computational approach to generating architectural forms for large spanning structures based on a “paper-cutting” technique. In this traditional artform, a flat sheet is cut and scored in such a way that a small application of force prompts it to expand into a three-dimensional structure. To make these types of expandable structures feasible at an architectural scale, four challenges had to be met during the research. The first was to map the kinetic properties of a paper-cut model, investigating formative parameters such as the width and frequency of cuts to determine how they affect the resulting structure. The second challenge was to computationally simulate the paper-cut structure in an accurate fashion. We accomplished this task using finite element analysis in the Ansys software platform. The third challenge was to create a prediction model that could precisely forecast the characteristics of a paper-cutting pattern. We made significant strides in this demanding task by using a data-mining approach and regression analysis through 400 simulations of various cutting patterns. The final challenge was to verify the efficiency and accuracy of our prediction model, which we accomplished through a series of physical prototypes. Our resulting computational paper-cutting system can be used to estimate optimal cutting patterns and to predict the resulting structural characteristics, thereby providing greater rigor to what has previously been an ad-hoc and experimental design approach.

Artigo:

-

Palavras-chave: Transformable Paper-cut; Design method; Prediction Model; Regression analysis; Physical prototype,

Palavras-chave: -,

DOI: 10.5151/sigradi2018-1879

Referências bibliográficas
  • [1] Babaee, S., Shim, J., Weaver, J. C., Chen, E. R., Patel, N., & Bertoldi, K. (2013). 3D soft metamaterials with negative Poisson's ratio. Advanced Materials, 25(36), 5044-5049. Baseta, E., Sollazzo, A., Civetti, L., Velasco, D., & Garcia-Amorós, J. (2017). Photoreactive wearable: A computer generated garment with embedded material knowledge. SharingofComputableKnowledge!, 317. Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R., & Kraft, O. (2014). High-strength cellular ceramic composites with 3D microarchitecture. Proceedings of the National Academy of Sciences, 111(7), 2453-2458. Bertoldi, K., Reis, P. M., Willshaw, S., & Mullin, T. (2010). Negative Poisson's ratio behavior induced by an elastic instability. Advanced Materials, 22(3), 361-366. Blees, M. K., Barnard, A. W., Rose, P. A., Roberts, S. P., McGill, K. L., Huang, P. Y., ... & McEuen, P. L. (2015). Graphene kirigami. Nature, 524(7564), 204. Cho, Y., Shin, J. H., Costa, A., Kim, T. A., Kunin, V., Li, J., ... & Srolovitz, D. J. (2014). Engineering the shape and structure of materials by fractal cut. Proceedings of the National Academy of Sciences, 111(49), 17390-17395. Cranford, S. W., Tarakanova, A., Pugno, N. M., & Buehler, M. J. (2012). Nonlinear material behaviour of spider silk yields robust webs. Nature, 482(7383), 72. Fan, J. A., Yeo, W. H., Su, Y., Hattori, Y., Lee, W., Jung, S. Y., ... & Bajema, M. (2014). Fractal design concepts for stretchable electronics. Nature communications, 5, 3266. Grima, J. N., Alderson, A., & Evans, K. E. (2004). Negative Poisson’s ratios from rotating rectangles. Comput. Methods Sci. Technol, 10(2), 137-145. Hueg-Huang, L. (2017). Finite Element Simulations with ANSYS Workbench 17. SDC Publications. Kane, C. L., & Lubensky, T. C. (2014). Topological boundary modes in isostatic lattices. Nature Physics, 10(1), 39. Kang, S. H., Shan, S., Noorduin, W. L., Khan, M., Aizenberg, J., & Bertoldi, K. (2013). Buckling‐induced reversible symmetry breaking and amplification of chirality using supported cellular structures. Advanced materials, 25(24), 3380-3385. Kim, J. Y., & Kotov, N. A. (2013). Charge transport dilemma of solution-processed nanomaterials. Chemistry of Materials, 26(1), 134-152. Lee, P., Ham, J., Lee, J., Hong, S., Han, S., Suh, Y. D., ... & Ko, S. H. (2014). Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Advanced Functional Materials, 24(36), 5671-5678. Mandelbrot, B. B. (1982). The fractal geometry of nature (Vol. 1). New York: WH freeman. Rosen, D. v. (2018). Bilinear Regression Analysis. Springer International Publishing. Schenk, M., & Guest, S. D. (2013). Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences, 110(9), 3276-328 Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., & Someya, T. (2008). A rubberlike stretchable active matrix using elastic conductors. Science, 321(5895), 1468-1472. Shyu, T. C., Damasceno, P. F., Dodd, P. M., Lamoureux, A., Xu, L., Shlian, M., ... & Kotov, N. A. (2015). A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nature materials, 14(8), 785. Strickland, J. (2011). Simulation Conceptual Modeling. Lulu. com. Taylor, M., Francesconi, L., Gerendás, M., Shanian, A., Carson, C., & Bertoldi, K. (2014). Low porosity metallic periodic structures with negative Poisson's ratio. Advanced Materials, 26(15), 2365-2370.
Como citar:

Danesh Zand, Foroozan; Baghi, Ali; Kalantari, Saleh; "Digitally Fabricating Expandable Steel Structures Using Kirigami Patterns", p. 724-731 . In: . São Paulo: Blucher, 2018.
ISSN 2318-6968, DOI 10.5151/sigradi2018-1879

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações