Original Article - Open Access.

Idioma principal | Segundo idioma

EQUAÇÃO DE DISPERSÃO DE POLUENTES ATMOSFÉRICOS COM PARÂMETRO FRACIONAL USANDO UMA SOLUÇÃO ANALÍTICA CONSIDERANDO A DERIVADA CONFORMÁVEL

DISPERSION EQUATION OF ATMOSPHERIC POLLUTANTS WITH FRACTIONAL PARAMETER IN THE DIFFUSIVE TERM USING CONFORMABLE DERIVATIVE AN ANALYTICAL SOLUTION

SOLEDADE, ANDRÉ LUIZ SANTOS DA ; XAVIER, PAULO HENRIQUE FARIAS ; SILVA, JOSÉ ROBERTO DANTAS DA ; PALMEIRA, ANDERSON DA SILVA ; MOREIRA, DAVIDSON MARTINS ;

Original Article:

Este estudo tem como objetivo investigar o potencial de derivados fracionários na modelagem de dispersão atmosférica. Portanto, uma solução analítica da equação bidimensional de advecção-difusão fracionada é proposta usando métodos GILTT e derivados conformáveis. A novidade deste estudo é a inserção de um parâmetro fracionário no termo difusivo considerando a derivada conformável, levando em consideração o comportamento anômalo no processo de difusão, resultando em uma nova metodologia aqui denominada método α-GILTT. As simulações foram comparadas com os dados moderadamente instáveis do experimento de Copenhagen e os melhores resultados são para o parâmetro fracionário α = 0.99.

Original Article:

This study aims to investigate the potential of fractional derivatives in atmospheric dispersion modeling. Therefore, an analytical solution of the two-dimensional fractional advection-diffusion equation is proposed using GILTT and conformable derivatives methods. The novelty of this study is the insertion of a fractional parameter in the diffusive term considering the conformable derivative, considering the anomalous behavior in the diffusion process, resulting in a new methodology here called α-GILTT method. The simulations were compared with the moderately unstable data from the Copenhagen experiment and the best results are for the fractional parameter α = 0.99.

Palavras-chave: α-GILTT; Difusão anômala; Derivada conformável,

Palavras-chave: α-GILTT, Anomalous diffusion, Conformable derivatives,

DOI: 10.5151/siintec2021-208647

Referências bibliográficas
  • [1] "1 RICHARDSON, L.F., 1926. Atmospheric diffusion is shown on a distance-neighbors graph. Proc. R. Soc. Lond. A 110, 709-737.
  • [2] 2 MOREIRA, Davidson; MORET, Marcelo. A New Direction in the Atmospheric Pollutant Dispersion inside the Planetary Boundary Layer. Journal of Applied Meteorology and Climatology, 2018, 57.1: 185-19
  • [3] 3 METZLER, Ralf; KLAFTER, Joseph. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics reports, 2000, 339.1: 1-77.
  • [4] 4 METZLER, Ralf; KLAFTER, Joseph. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics A: Mathematical and General, 2004, 37.31: R161.
  • [5] 5 WEST, Bruce J. Colloquium: Fractional calculus view of complexity: A tutorial. Reviews of modern physics, 2014, 86.4: 1169.
  • [6] 6 ZHOKH, Alexey A.; TRYPOLSKYI, Andrey I.; STRIZHAK, Peter E. Asymptotic Green’s functions for time-fractional diffusion equation and their application for anomalous diffusion problem. Physica A: Statistical Mechanics and its Applications, 2017, 475: 77-81.
  • [7] 7 BABAKHANI, A.; DAFTARDAR-GEJJI, Varsha. On the calculus of local fractional derivatives. Journal of Mathematical Analysis and Applications, 2002, 270.1: 66-79.
  • [8] 8 CHEN, Yan; YAN, Ying; ZHANG, Kewei. On the local fractional derivative. Journal of Mathematical Analysis and Applications, 2010, 362.1: 17-33.
  • [9] 9 KHALIL, Roshdi, et al. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 2014, 264: 65-70.
  • [10] 10 ATANGANA, A. (2015). Derivative with a new parameter: Theory, methods, and applications. Academic Press.
  • [11] 11 WORTMANN S, VILHENA MT, MOREIRA DM, BUSKE D. (2005). A new analytical approach to simulate the pollutant dispersion in the PBL. Atmospheric Environment, 39(12), 2171-2178.
  • [12] 12 MOREIRA, D. M., VILHENA, M.T., TIRABASSI, T., BUSKE, D. and COTTA, R.M., 2005. Near source atmospheric pollutant dispersion using the new GILTT method. Atmos. Environ. 39, 6289-6294.
  • [13] 13 MOREIRA, D.M., VILHENA, M.T., BUSKE, D. and TIRABASSI, T., 2006. The GILTT solution of the advection-diffusion equation for an inhomogeneous and nonstationary PBL. Atmos. Environ. 40, 3186-3194.
  • [14] 14 MOREIRA, D.M., VILHENA, M.T., BUSKE, D. and TIRABASSI, T., 2009. The state-of-art of the GILTT method to simulate pollutant dispersion in the atmosphere. Atmos. Res. 92, 1-17.
  • [15] 15 BUSKE, D., VILHENA, M.T., MOREIRA, D.M. and TIRABASSI, T., 2007a. An analytical solution of the advection-diffusion equation considering non-local turbulence closure. Environ. Fluid Mech. 7, 43-54.
  • [16] 16 BUSKE, D., VILHENA, M.T., MOREIRA, D.M. and TIRABASSI, T., 2007b. Simulation of pollutant dispersion for low wind conditions in stable and convective Planetary Boundary Layer. Atmospheric Environment 41, 5496-5501.
  • [17] 17 TIRABASSI, T., BUSKE, D., MOREIRA, D.M., VILHENA, M.T., 2008. A two-dimensional solution of the advection-diffusion equation with dry deposition to the ground. Journal of Applied Meteorology and Climatology 47, 2096-2104.
  • [18] 18 WEYMAR, Guilherme Jahnecke. Uma solução da equação multidimensional de advecção-difusão para a simulação da dispersão de contaminantes reativos na camada limite atmosférica. 2016.
  • [19] 19 BUSKE, D., QUADROS, R. S., OLIVEIRA, R. E., Guilherme, J. W., & HARTER, F. P. (2017). Analytical solution for contaminant dispersion model in rivers and canals applying the method GILTT. International Journal of Development Research, 7(07), 13857-13864.
  • [20] 20 GOMEZ-AGUILAR, J.F., MIRANDA-HERNANDEZ, M., LOPEZ-LOPEZ, M.G., ALVARADO-MARTINEZ, V.M. and BALEANU, D., 2016. Modeling and simulation of the fractional space-time diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 30, 115-127.
  • [21] 21 MOREIRA, D.M and Santos, C.A.G., 2019. New approach to handle gas-particle transformation in air pollution modeling using fractional derivatives. Atmos. Pollut. Res. 10, 1577-1587.
  • [22] 22 CRANK, J., 1979. The mathematics of diffusion. Oxford University Press, 414 pp.
  • [23] 23 SEGATTO, C. F.; VILHENA, M. T. The State-of-the-art of the LTSN Method. Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, 1999, 1618-1631.
  • [24] 24 GRYNING, Sven-Erik; LYCK, Erik. Atmospheric dispersion from elevated sources in an urban area: comparison between tracer experiments and model calculations. Journal of climate and applied
  • [25] 25DEGRAZIA, GA et al. Validation of a new turbulent parameterization for dispersion models in convective conditions. Boundary-Layer Meteorology, Springer, v. 85, n. 2, p. 243–254, 1997.
  • [26] 26 COLIN, C., MASSION, V., & PACI, A. Adaptation of the meteorological model Meso-NH to laboratory experiments: implementations and validation. Geoscientific Model Development Discussions, p. 1-32, 2017.
  • [27] 27 HANNA, Steven R. Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods. Atmospheric Environment (1967), 1989, 23.6: 1385-1398.
Como citar:

SOLEDADE, ANDRÉ LUIZ SANTOS DA ; XAVIER, PAULO HENRIQUE FARIAS; SILVA, JOSÉ ROBERTO DANTAS DA ; PALMEIRA, ANDERSON DA SILVA; MOREIRA, DAVIDSON MARTINS; "EQUAÇÃO DE DISPERSÃO DE POLUENTES ATMOSFÉRICOS COM PARÂMETRO FRACIONAL USANDO UMA SOLUÇÃO ANALÍTICA CONSIDERANDO A DERIVADA CONFORMÁVEL", p. 311-320 . In: VII International Symposium on Innovation and Technology. São Paulo: Blucher, 2021.
ISSN 2357-7592, DOI 10.5151/siintec2021-208647

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações