Artigo completo - Open Access.

Idioma principal | Segundo idioma

EVALUATION OF MICROPHYSICAL PARAMETERIZATIONS OF THE WRF MODEL IN A TROPICAL REGION

AVALIAÇÃO DAS PARAMETRIZAÇÕES DE MICROFÍSICA DO MODELO WRF EM UMA REGIÃO TROPICAL

Souza, Noéle Bissoli Perini de ; Nascimento, Erick Giovani Sperandio ; Moreira, Davidson Martins ;

Artigo completo:

The performance evaluation of the Weather Research and Forecasting (WRF) model was carried out using eight microphysics schemes in order to identify the best parameters for the most and least rainy periods. The modeling results were compared with the observational data from a tower located in the municipality of Esplanada, in the state of Bahia, with anemometers at heights of 80, 100, 120 and 150 m. In general, it was found that all tested schemes can be used in tropical regions, however, it can be concluded that Eta and Kessler showed better performances for the more and less rainy period, respectively, in addition to overestimating the speed.

Artigo completo:

A avaliação do desempenho do modelo Weather Research and Forecasting (WRF) foi realizada utilizando oito esquemas de microfísica a fim de identificar as melhores parametrizações para os períodos mais e menos chuvoso. Os resultados da modelagem foram comparados com os dados observacionais provenientes de uma torre localizada no município de Esplanada, no estado baiano, com anemômetros em alturas de 80, 100, 120 e 150 m. No geral, constatou-se que todos os esquemas testados podem ser utilizados em regiões tropicais, porém, pode-se concluir que Eta e Kessler apresentaram melhores desempenhos para o período mais e menos chuvoso, respectivamente, além de superestimar a velocidade.

Palavras-chave: microfísica; WRF; região tropical,

Palavras-chave: microfísica; WRF; região tropical,

DOI: 10.5151/siintec2020-EVALUATIONOFMICROPHYSICAL

Referências bibliográficas
  • [1] 1 Oliveira, S. S. Análise do potencial eólico do estado da Paraíba utilizando modelos de mesoescala. Tese (Doutorado em Meteorologia) – Universidade Federal de Campina Grande, Centro de Tecnologia e Recursos Naturais, Campina Grande, 2013.
  • [2] 2 ABEEólica – Boletim anual de geração eólica. Disponível em: < http://www.abeeolica.org.br/wp-content/uploads/2017/05/424_Boletim_Anual_de_Geracao_Eolica_2016_Alta.pdf>. Acesso em: 18 out 2017.
  • [3] 3 Surussavadee, C., 2017a. Evaluation of Tropical Near-Surface Wind Forecasts Using Ground Observations. The 8th International Renewable Energy Congress (IREC 2017).
  • [4] 4 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.
  • [5] 5 Kumar, R. A., Dudhia, J., Bhowmik, S. K. R., 2010. Evaluation of physics options of the Weather Research and Forecasting (WRF) Model to simulate high impact heavy rainfall events over Indian Monsoon region. Geofisika, vol. 27, 101-12
  • [6] 6 Mohan, M., Bhati, S., 2011. Analysis of WRF Model Performance over Subtropical Region of Delhi, India. Advances in Meteorology, vol. 2011, pp. 1-13. doi:10.1155/2011/621235
  • [7] 7 Soni, M., Payra, S., Sinha, P., Verma, S., 2014. A Performance Evaluation of WRF Model Using Different Physical. Parameterization Scheme during Winter Season over a Semi-Arid Region, India. International Journal of Earth and Atmospheric Science, vol 1, pp. 104-114.
  • [8] 8 Islam, T., Srivastava, P. K., Rico-Ramirez, M. A., Dai, Q., Gupta, M., Singh, S. K., 2015. Nat Hazards, vol. 76, pp. 1473–1495. doi: 10.1007/s11069-014-1494-8
  • [9] 9 Imran, H. M., Kala, J., Ng, A. W. M., Muthukumaran, S., 2017. An evaluation of the performance of a WRF multi-physics ensemble for heatwave events over the city of Melbourne in the southeast Australia. Climate Dynamics, p. 1-34. doi: 10.1007/s00382-017-3758-y
  • [10] 10 Hariprasad, K.B.R.R., Srinivas, C.V., Bagavath Singh, A., Vijaya Bhaskara Rao, S., Baskaran, R., Venkatraman, B., 2014. Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmospheric Research, v. 145-146, p. 27–44. DOI: http://dx.doi.org/1016/j.atmosres.2014. 03.023
  • [11] 11 Carvalho, D., Rocha, A., Gómez-Gesteira, M., Santos, C.S., 2012. A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environmental Modelling & Software, vol. 33, pp. 23–34. doi: 10.1016/j.envsoft.2012.01.019
  • [12] 12 Carvalho, D., Rocha, A., Gómez-Gesteira, M., Santos, C.S., 2014a. Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula. Applied Energy, vol. 135, pp. 234–246. doi: 10.1016/j.apenergy.2014.08.082
  • [13] 13 Carvalho, D., Rocha, A., Gómez-Gesteira, M., Santos, C.S., 2014b. WRF Wind simulation and Wind energy production estimates forced by different reanalysis: Comparison with observed data for Portugal. Applied Energy, vol. 117, pp. 116–126. doi: 10.1016/j.apenergy.2012.001
  • [14] 14 Giannakopoulou, E-M., Nhili, R., 20 WRF Model Methodology for Offshore Wind Energy Applications. Advances in Meteorology, vol. 20 doi: 10.1155/2014/319819
  • [15] 15 Mattar, C., Borvarán, D., 2016. Offshore Wind power simulation by using WRF in the central coast of Chile. Renewable Energy, vol. 94, pp. 22-31. doi: 10.1016/j.renene.2016.03.005
  • [16] 16 Surussavadee, C., 2017a. Evaluation of Tropical Near-Surface Wind Forecasts Using Ground Observations. The 8th International Renewable Energy Congress (IREC 2017).
  • [17] 17 Surussavadee, C., 2017b. Evaluation of WRF near-surface wind Simulations in Tropics Employing different planetary boundary layer schemes. The 8th International Renewable Energy Congress (IREC 2017).
  • [18] 18 Surussavadee, C., Aonchart, P. “Evaluation of WRF Physics Options for High-Resolution Weather Forecasting in Tropics Using Satellite Passive Millimeter-WaveObservations,” Proc. IEEE Intern. Geosci. Remote Sens. Symp. 2013, Melbourne, Australia, pp. 2262 – 2265, Jul. 2013.
  • [19] 19 Jahn, D. E., Takle, E. S., Gallus Jr, W. A., 2017. Wind-Ramp-Forecast Sensitivity to Closure Parameters in a Boundary-Layer Parametrization Scheme. Boundary-Layer Meteorol, vol. 164, pp. 475-490. doi: 10.1007/s10546-017-0250-5
  • [20] 20 Ramos, D. N. da S., Lyra, R. F. da F., Silva Jr., R. S. da, 2013. Previsão do vento utilizando o modelo atmosférico WRF para o estado de Alagoas. Revista Brasileira de Meteorologia, vol. 28, pp. 163-172.
  • [21] 21 Atlas Eólico: Bahia. Camargo Schubert: Bahia, 2013.
  • [22] 22 Instituto Nacional de Meteorologia (INMET) Disponível em: https://clima.inmet.gov.br/GraficosClimatologicos/DF/83377.
  • [23] 23 National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. 2015, updated daily. NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D65Q4T4Z. Accessed 23 Jan 2017.
  • [24] 24 Kitagawa, Y.K.L., Nascimento, E.G.S., Souza, N.B.P.de, Zucatelli, P.J., Aylas, G.Y.R., Moreira, D.M., Salvador, N., 2017. Assessment of the sensitivity of the WRF model using different PBL schemes over the Metropolitan Region of Salvador. XXXVIII Ibero-Latin American Congress on Computational Methods in Engineering (CILAMCE2017). doi: 10.20906/CPS/CILAMCE2017-0647
  • [25] 25 Janjic, Z. I., 1994. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, vol. 122, pp. 927-945. doi: 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
  • [26] 26 Cheng, W.Y.Y., Liu, Y., Zhang, Y., Mahoney, W.P., Warner, T.T., 2013. The impact of model physics on numerical wind forecasts. Renewable Energy, vol. 55, pp. 347-356. doi: 10.1016/j.renene.2012.12.041
  • [27] 27 Zempila, M-M., Giannaros, T.M., Bais, A., Melas, D., 2016. Evaluation of WRF shortwave radiation parameterizations in predicting Global Horizontal Irradiance in Greece. Renewable Energy, vol. 86, pp. 831-840. doi: 10.1016/j.renene.2015.08.057
  • [28] 28 Gunwani, P., Mohan, M., 2017. Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India. Atmospheric Research, vol. 194, pp. 43–65. doi: 10.1016/j.atmosres.2017.04.026
Como citar:

Souza, Noéle Bissoli Perini de ; Nascimento, Erick Giovani Sperandio ; Moreira, Davidson Martins ; "EVALUATION OF MICROPHYSICAL PARAMETERIZATIONS OF THE WRF MODEL IN A TROPICAL REGION", p. 576-584 . In: Anais do VI Simpósio Internacional de Inovação e Tecnologia. São Paulo: Blucher, 2020.
ISSN 2357-7592, ISBN: 2357-7592
DOI 10.5151/siintec2020-EVALUATIONOFMICROPHYSICAL

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações