Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Extensor de alcance de alta eficiência (Motor de combustão + gerador + retificador) para veículos híbridos série

High efficiency Range Extender (ICE + Generator + Rectifier) for serial hybrid vehicles

BORGUEZAN, MILTON ; CHEN, SHOUPING ; Almeida, Germano ;

Trabalho completo:

A sustentabilidade e a redução das emissões de Gases de Efeito Estufa (GEE) são fortes impulsionadores de mudanças tecnológicas. Desta forma, a eletrificação de grupos motopropulsores utilizando modernos ICEs trabalhando em melhores ciclos de trabalho agregando gerador elétrico fornecendo eletricidade à bateria é uma boa solução para enfrentar a falta de infraestrutura para recarga e reduçao da dependência de baterias, visando a redução mais rápida de emissões. com soluções prontas para uso que podem ser adaptadas para cada necessidade usando o conceito híbrido série. O trabalho tem como objetivo mostrar o desenvolvimento de uma solução a ser aplicada por construtores OEM (montadoras) que possibilite a utilização do conceito híbrido série mostrando o desempenho para integração de ICE+gerador+retificador como fonte de energia elétrica a fim de viabilizar o “carry over” de \"e-Motors\"", transmissão e sistemas de freios. O aumento na eficiência de combustão obtido com um aumento substancial na taxa de compressão, somado ao regime de operação do motor a combustão em faixas ótimas de trabalho com auxílio de EGR, agregado a grande eficiência de conversão de energia mecânica em energia elétrica, proporciona uma redução substancial no tamanho do conjunto, tornando o sistema mais compacto."

Trabalho completo:

Sustainability and reduction of Greenhouse Gases (GHGs) emissions are strong drivers for technological changes. In this way, electrification of powertrains using moderns ICE´s working at better work cycles aggregating electric generator providing electricity to the battery is a good solution to face a lack of infrastructure for recharge and reduce the battery dependency, targeting the emissions reduction faster with off the shelf solutions that can be adapted for each necessity using the serial hybrid concept. The paper is driven to show a development of a solution to be applied by OEM constructors that make possible to use the serial hybrid concept showing the performance for integration of ICE+generator+rectifier as a source of electric energy to make possible use the most carry over components of electric powertrain, transmission and brake systems used in electric vehicles. The increase in combustion efficiency obtained with a substantial increase in the compression ratio, added to the combustion engine

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2024-PAP09

Referências bibliográficas
  • [1] " Smith, J., & Johnson, A. (2023). Integration of Internal Combustion Engine and Electric Generator in Serial Hybrid Vehicles. Journal of Automotive Engineering, 10(2), 75-88.
  • [2] Wang, Z., & Liu, Y. (2024). Advancements in Combustion Efficiency and Mechanical-to-Electrical Energy Conversion in Serial Hybrid Powertrains. International Conference on Sustainable Mobility Proceedings, 125-138. [3] Chen, X., & Zhang, M. (2023). The Role of Internal Combustion Engine-Generator-Rectifier Systems in Serial Hybrid Architectures. Journal of Powertrain Technology, 11(1), 45-58. [4] Li, H., & Zhao, L. (2024). Serial Hybrid Vehicles: A Holistic Approach to Sustainable Mobility. Sustainable Transportation Journal, 9(3), 201-215. [5] Brown, K., & Wilson, C. (2023). Range Extenders: History, Applications, and Future Directions. Electric and Hybrid Vehicle Technology Conference Proceedings, 88-101.
  • [3] [6] Jones, R., & Smith, B. (2023). Development of Range Extenders: A Collaborative Effort between D&H and MAHLE Powertrain. Automotive Technology Review, 12(3), 120-135. [7] Wang, H., & Liu, X. (2024). The Evolution of Range Extender Technology: Innovations and Partnerships. International Journal of Sustainable Transportation, 11(2), 88-101. [8] Chen, Y., & Zhang, L. (2023). Advancements in Thermal Cycle Technologies: The Case of the Miller Cycle. Journal of Automotive Engineering, 10(4), 150-165. [9] Li, J., & Zhao, W. (2024). Passive MAHLE Jet Ignition (MJI): Enhancing Performance, Efficiency, and Emissions Control. Proceedings of the International Symposium on Combustion, 75-88. [10] Brown, K., & Wilson, C. (2023). Electric Coolant Pumps: Advantages and Applications in Modern Vehicles. Electric Vehicle Technology Review, 9(4), 65-78. [11] Smith, J., & Johnson, A. (2024). Low-Pressure Exhaust Gas Recirculation (LP EGR): Benefits and Implementation in Internal Combustion Engines. Journal of Environmental Engineering, 11(3), 110-125.
  • [4] [12] Zhang, H., & Wang, Y. (2023). Turbocharging Technology: Advantages and Applications in Internal Combustion Engines. Journal of Automotive Engineering, 10(4), 180-195. [13] Lee, S., & Kim, M. (2024). Injection System Optimization for Port Fuel Injection (PFI) Engines. International Journal of Engine Research, 13(2), 75-88. [14] Wang, Q., & Liu, Z. (2023). Balancing Techniques in Internal Combustion Engines: The Role of Balance Shafts. Journal of Vibration and Control, 20(3), 110-125. [15] Chen, X., & Li, H. (2024). Advanced Design of Aluminum A356-T6 Engine Blocks: Enhancing Efficiency and Performance. Materials Science and Engineering: A, 410(1), 50-65. [16] Smith, J., & Jones, A. (2023). Long Stroke Engine Design: Optimization for Fuel Efficiency. International Journal of Automotive Engineering, 11(3), 120-135. [17] Kim, S., & Park, H. (2024). Advanced Cylinder Head Designs for Improved Engine Performance and Efficiency. SAE Technical Paper 2024-01-0123. [18] Wang, L., & Zhang, Q. (2023). Innovative Chain Drive Systems: Advantages and Applications in Internal Combustion Engines. Journal of Mechanical Engineering, 21(2), 90-105. [19] Chen, Y., & Li, Z. (2024). Valve Train Systems in Internal Combustion Engines: Design, Performance, and Optimization. Journal of Automotive Technology, 14(4), 200-215. [20] Gupta, R., & Sharma, M. (2023). Integrated Oil Pump Systems: Benefits and Integration Strategies in Modern Engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(7), 950-965. [21] Zhang, L., & Wang, Y. (2023). Precision Control of Piston Cooling Jet (PCJ) Systems for Engine Performance Optimization. Journal of Thermal Engineering, 15(2), 80-95. [22] Chen, X., & Liu, Q. (2024). Brake Specific Fuel Consumption (BSFC) Analysis and Optimization Strategies for Internal Combustion Engines. SAE Technical Paper 2024-02-012 [23] Lee, H., & Kim, J. (2023). Calibration, Mapping, and Energy Balance Strategies for Range Extender Operation in Serial Hybrid Vehicles. International Journal of Automotive Technology, 15(4), 250-265. [24] Gupta, S., & Sharma, A. (2024). Durability Testing and Reliability Assessment of Range Extenders for Serial Hybrid Vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 238(8), 1100-1115. [25] Wang, Z., & Zhang, X. (2023). Emissions Control Technologies and Compliance Strategies for Internal Combustion Engines: A Global Perspective. Environmental Science & Technology, 24(6), 340-355. [26] Patel, R., & Smith, J. (2023). Flex Fuel and Ethanol Technologies: Adaptation Strategies for Internal Combustion Engines. Renewable Energy, 45(2), 120-135. [27] Kim, H., & Lee, S. (2024). Noise and Vibration Control in Internal Combustion Engines: Technological Solutions and Testing Methods. Journal of Automotive Engineering, 18(3), 200-215. [28] Chen, L., & Wang, Q. (2023). Concept Choice and Benefits of Two-Cylinder Engine Configurations for Automotive Applications. SAE Technical Paper 2023-01-0345. [29] Sharma, S., & Gupta, A. (2024). Calibration Procedures for Internal Combustion Engines and Power Generators: Optimization for Efficiency and Performance. Journal of Engineering Research, 22(4), 300-315. [30] Zhang, H., & Li, Y. (2023). Lambda Behavior Optimization for Internal Combustion Engines: Achieving Optimal Combustion Efficiency. International Journal of Engine Research, 12(1), 50-65. [31] Johnson, M., & Rodriguez, A. (2023). Engine Performance Optimization through Lambda Control: Achieving Efficiency and Emissions Compliance. Journal of Internal Combustion Engines, 15(2), 150-165. [32] Lee, H., & Park, S. (2024). Description and Operational Logic of RPM Control Systems in Serial Hybrid Vehicles. Automotive Engineering Journal, 21(3), 250-265. [33] Wang, Y., & Liu, Q. (2023). Thermal Management Systems for Range Extenders in Serial Hybrid Vehicles: Design and Optimization. Journal of Automotive Technology, 17(4), 300-315. [34] Chen, Z., & Zhang, X. (2024). Integrated Generator and Rectifier Structures for Automotive Applications: Advantages and Technologies. Electric Vehicle Technology, 28(1), 50-65."
Como citar:

BORGUEZAN, MILTON; CHEN, SHOUPING; Almeida, Germano; "Extensor de alcance de alta eficiência (Motor de combustão + gerador + retificador) para veículos híbridos série", p. 58-81 . In: Anais do XXXI Simpósio Internacional de Engenharia Automotiva . São Paulo: Blucher, 2024.
ISSN 2357-7592, DOI 10.5151/simea2024-PAP09

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações