Completo - Open Access.

Idioma principal | Segundo idioma

Extraction and Phytochemical Characterization of Lithraea molleoides with Therapeutic Potential

Extraction and Phytochemical Characterization of Lithraea molleoides with Therapeutic Potential

Almeida, Fernanda de Jesus Oliveira ; Silva, Jennifer Nascimento da ; Nascimento, Pedro Ellison ; Mota, S.Wanessa Jeane de Santana ; Severino, Patrícia ; Santos, Adriana de Jesus ; Bjerk, Thiago Rodrigues ;

Completo:

"The aim of this work is to extract and phytochemically characterize Lithraea molleoides (Aroeira Branca) with a view to its therapeutic potential. The extraction was obtained using an ultrasound-assisted extraction method and characterized by chromatography. Preliminary results showed an average extract yield of 13.5%. Chromatographic analysis determined the presence of 14 compounds by the similarity of their fragmentation profile. At the end of this work, we hope to create a pharmacological innovation, contributing to the development of greener alternatives in the pharmaceutical industry."

Completo:

"The aim of this work is to extract and phytochemically characterize Lithraea molleoides (Aroeira Branca) with a view to its therapeutic potential. The extraction was obtained using an ultrasound-assisted extraction method and characterized by chromatography. Preliminary results showed an average extract yield of 13.5%. Chromatographic analysis determined the presence of 14 compounds by the similarity of their fragmentation profile. At the end of this work, we hope to create a pharmacological innovation, contributing to the development of greener alternatives in the pharmaceutical industry."

Palavras-chave: Extraction; Characterization; Lithraea molleoides,

Palavras-chave: Extraction; Characterization; Lithraea molleoides,

DOI: 10.5151/siintec2024-393381

Referências bibliográficas
  • [1] "1 ALMEIDA, L. G. et al. Alcoholic extract from Shinus molle fruits: antioxidante activity
  • [2] and evaluation of its action as na inhibitor of lipid oxidation in vegetable oils. Anais
  • [3] de emic, 2019.
  • [4] 2 CHIAPERO, A. L. et al. Reproductive resilience to habitat fragmentation of Lithraea
  • [5] molleoides (Anacardiaceae), a dominant dioecious tree from the Chaco Serrano.
  • [6] Forest Ecology and Management, v. 492, p. 119215, 2021.
  • [7] 3 FERNÁNDEZ, T. et al. Immunomodulating properties of Argentine plants with
  • [8] ethnomedicinal use. Phytomedicine, v. 9, n. 6, p. 546-552, 2002.
  • [9] 4 LÓPEZ, P. et al. 1, 3-dihydroxy-5-(tridec-4′, 7′-dienyl) benzene: a new cytotoxic
  • [10] compound from Lithraea molleoides. Phytomedicine, v. 12, n. 1-2, p. 108-111, 2005.
  • [11] 5 BARBINI, L. et al. Induction of apoptosis on human hepatocarcinoma cell lines by
  • [12] an alkyl resorcinol isolated from Lithraea molleoides. World Journal of
  • [13] Gastroenterology: WJG, v. 12, n. 37, p. 5959, 2006.
  • [14] 6 SHIMIZU, M.T. et al. Essential oil of Lithraea molleoides (Vell.): chemical
  • [15] composition and antimicrobial activity. Braz. J. Microb. 37: 556-560, 2006.
  • [16] 7 CARVALHO, P. E. R. Bugreiro: Lithrea molleoides. EMBRAPA. v.2, p. 98, 2006.
  • [17] 8 RUFFA, M. J. et al. Cytotoxic effect of Argentine medicinal plant extracts on human
  • [18] hepatocellular carcinoma cell line. Journal of ethnopharmacology, v. 79, n. 3, p.
  • [19] 335-339, 2002.
  • [20] 9 WANG, L. et al. Selective sensing of catechol based on a fluorescent nanozyme
  • [21] with catechol oxidase activity. Spectrochimica Acta Part A: Molecular and
  • [22] Biomolecular Spectroscopy, p. 123003, 2023.
  • [23] 10 LI, M. et al. Towards eco-friendly plant growth regulator: A robustly stable and
  • [24] efficient uniconazole emulsion based on onion-like lamellar liquid crystal. Industrial
  • [25] Crops and Products, v. 216, p. 118734, 2024.
  • [26] 11 WANG, X. et al. Comparative analysis for strain response and life monitoring of
  • [27] composite using carbon-based nanosensors. Sensors and Actuators A: Physical,
  • [28] p. 115021, 2024.
  • [29] 12 MATOS, A. A. et al. An extract from Myracrodruon urundeuva inhibits matrix
  • [30] mineralization in human osteoblasts. Journal of ethnopharmacology, v. 237, p.
  • [31] 192-201, 2019.
  • [32] 13 DE ALMEIDA-APOLONIO, A. A. et al. Myracrodruon urundeuva All. aqueous
  • [33] extract: A promising mouthwash for the prevention of oral candidiasis in HIV/AIDS
  • [34] patients. Industrial Crops and Products, v. 145, p. 111950, 2020.
  • [35] 14 MARANGONI, J. A. et al. Geographical variation in the chemical composition,
  • [36] anti-inflammatory activity of the essential oil, micromorphology and histochemistry of
  • [37] Schinus terebinthifolia Raddi. Journal of Ethnopharmacology, v. 301, p. 115786,
  • [38] 2023.
  • [39] 15 ULIANA, M. P. et al. Composition and biological activity of Brazilian rose pepper
  • [40] (Schinus terebinthifolius Raddi) leaves. Industrial Crops and Products, v. 83, p.
  • [41] 235-240, 2016.
  • [42] 16 DA SILVA NASCIMENTO, M. et al. Schinus terebinthifolius Raddi (Brazilian
  • [43] pepper) leaves extract: in vitro and in vivo evidence of anti-inflammatory and
  • [44] antioxidant properties. Inflammopharmacology, v. 31, n. 5, p. 2505-2519, 2023.
  • [45] 17 FERREIRA, B. L. et al. Ultrasound assisted extraction for lipids determination in
  • [46] food: a laboratory experiment. New Chemistry, v. 43, p. 1320-1325, 2020.
  • [47] 18 DE SOUZA, M.E.A.O. et al. Determination of the antioxidant capacity of pineapple
  • [48] peel powder extract applying different extraction techniques. Research, Society and
  • [49] Development , v. 10, n. 10, p. e155101018574-e155101018574, 2021.
  • [50] 19 HEMA, R., KUMARAVEL, S., ALAGUSUNDARAM, K. GC/MS determination of
  • [51] bioactive components of Murraya koenigii. Journal of American Science, v. 7, n. 1,
  • [52] p. 80-83, 2011.
  • [53] 20 DE OLIVEIRA VASCONCELOS, V. et al. Acaricidal activity of extracts of Mauritia
  • [54] flexuosa and Mauritiella armata on Rhipicephalus microplus (lxdidae): Acaricidal
  • [55] activity of axtracts of Mauritia flexuosa and Maruitiella armata on Rhipicephalus
  • [56] microplus (Ixodidae). Unimontes Scientific Magazine, v. 2, p. 1 – 15, 2023.
  • [57] 21 AMARAL, W. D. et al. Essential oil yield and composition of native tree species
  • [58] from Atlantic Forest, South of Brazil. Journal of Essential Oil Bearing Plants, v. 20,
  • [59] n. 6, p. 1525-1535, 2017.
  • [60] 22 DA SILVA, L. D. F. F. et al. Antibacterial activity of Lithraea molleoides Hook et Arn.
  • [61] and Poiretia latifolia Vogel essential oils combined with gentamicin on foodborne
  • [62] disease-causing bacteria. Biocatalysis and Agricultural Biotechnology, v. 48, p.
  • [63] 102620, 2023.
  • [64] 23 TODIRASCU-CIORNEA, E. et al. Schinus terebinthifolius essential oil attenuates
  • [65] scopolamine-induced memory deficits via cholinergic modulation and antioxidant
  • [66] properties in a zebrafish model. Evidence-Based Complementary and Alternative
  • [67] Medicine, v. 2019, 2019. 24 TANG, M. et al. Cubic liquid crystals containing propolis flavonoids as in situ
  • [68] thermo-sensitive hydrogel depots for periodontitis treatment: Preparation,
  • [69] pharmacodynamics and therapeutic mechanisms. European Journal of
  • [70] Pharmaceutical Sciences, v. 196, p. 106762, 2024.
  • [71] 25 DE MELO, A.M. et al. Extraction, identification and study of the antimicrobial
  • [72] potential of black pepper (Piper nigrum L.) essential oil, biomonitored by Artemia
  • [73] salina Leach. Holos, vol. 1, p. 1-16, 2021.
  • [74] 26 CHRUSZCZ-LIPSKA, K. Probing the stereochemical structure of carenes using
  • [75] Raman and Raman optical activity spectroscopy. Spectrochimica Acta Part A:
  • [76] Molecular and Biomolecular Spectroscopy, v. 276, p. 121176, 2022.
  • [77] 27 SILVA, A. R. S. T. et al. Effect of 3-carene and the micellar formulation on
  • [78] Leishmania (Leishmania) amazonensis. Tropical Medicine and Infectious Disease,
  • [79] v. 8, n. 6, p. 324, 2023.
  • [80] 28 FRANCOMANO, F. et al. β-Caryophyllene: a sesquiterpene with countless
  • [81] biological properties. Applied sciences, v. 9, n. 24, p. 5420, 2019.
  • [82] 29 KANG, X. et al. Caryophyllene sesquiterpenoids with various ring systems from the
  • [83] fungus Pestalotiopsis chamaeropis. Phytochemistry, v. 207, p. 113569, 2023.
  • [84] 30 CHENG, L., JI, T., ZHANG, M., & FANG, B. Recent advances in squalene:
  • [85] Biological activities, sources, extraction, and delivery systems. Trends in Food
  • [86] Science & Technology, p. 104392, 2024.
  • [87] 31 ABRAMSSON-ZETTERBERG, L., SLANINA, P. Macrocyclic musk compounds—an
  • [88] absence of genotoxicity in the Ames test and the in vivo Micronucleus assay.
  • [89] Toxicology Letters, v. 135, n. 1-2, p. 155-163, 2002.
  • [90] 32 CHENG, H. et al. Calcium glycerolate catalyst derived from eggshell waste for
  • [91] cyclopentadecanolide synthesis. Frontiers in Chemistry, v. 9, p. 770247, 2021.
  • [92] 33 LIU, P., LI, W., LIU, X. A novel synthesis method of cyclopentadecanone and
  • [93] cyclopentadecanolide from vegetable oil. BMC chemistry, v. 16, n. 1, p. 46, 2022.
  • [94] 34 DE MACEDO, I.B.T. et al. Production of higher fatty alcohols from hydrogenation of
  • [95] methyl esters using copper-based catalysts. Blucher Chemical Engineering
  • [96] Proceedings , v. 1, n. 3, p. 1416-1421, 2015.
  • [97] 35 MCGINTY, D.; LETIZIA, C. S.; API, A. M. Review Fragrance material review on
  • [98] phytol. Food and Chemical Toxicology, v. 48, p. 59-63, 2010.
  • [99] 36
  • [100] ISLAM, M. T. et al. Evaluation of toxic, cytotoxic and genotoxic effects of phytol and
  • [101] its nanoemulsion. Chemosphere, v. 177, p. 93-101, 2017 37 DE MORAES, J. et al. Phytol, a diterpene alcohol from chlorophyll, as a drug
  • [102] against neglected tropical disease Schistosomiasis mansoni. PLoS neglected
  • [103] tropical diseases, v. 8, n. 1, p. e2617, 2014.
  • [104] 38
  • [105] IKE, D. C., IBEZIM-EZEANI, M. U., AKARANTA, O. Cashew nutshell liquid and its
  • [106] derivatives in oil field applications: an update. Green Chemistry Letters and
  • [107] Reviews, v. 14, n. 4, p. 620-633, 2021.
  • [108] 39 SANTOS, T.C.N.D. Larvicidal activity of secondary metabolites of plants from
  • [109] the Tocantins cerrado biome with effect on culicides. 2022.
  • [110] 40 TETTAMANTI BOSHIER, F. A. et al. Complementing 16S rRNA gene amplicon
  • [111] sequencing with total bacterial load to infer absolute species concentrations in the
  • [112] vaginal microbiome. Msystems, v. 5, n. 2, p. 10.1128- 00777-19, 2020
  • [113] 41 NEVES, A.D.S Squalene: exploring alternative sources for its use in the
  • [114] pharmaceutical and cosmetic industries. 2024."
Como citar:

Almeida, Fernanda de Jesus Oliveira; Silva, Jennifer Nascimento da; Nascimento, Pedro Ellison; Mota, S.Wanessa Jeane de Santana; Severino, Patrícia; Santos, Adriana de Jesus; Bjerk, Thiago Rodrigues; "Extraction and Phytochemical Characterization of Lithraea molleoides with Therapeutic Potential", p. 124-135 . In: . São Paulo: Blucher, 2024.
ISSN 2357-7592, DOI 10.5151/siintec2024-393381

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações