Full Article - Open Access.

Idioma principal

EXTRAÇÃO DE CONTORNOS DE LESÕES DE PELE UTILIZANDO DIFUSÃO ANISOTRÓPICA E MODELOS DE CONTORNO ATIVO SEM BORDA

Oliveira, Roberta B. ; Araujo, Alex F. de ; Tavares, João Manuel R. S. ; Marranghello, Norian ; Rossetti, Ricardo B. ; Pereira, Aledir S. ;

Full Article:

According to an estimate made by the National Cancer Institute (INCA) in 2012, also valid for the year 2013, the skin cancer appears as one of the most cancer types common in Brazil. The high level of predominance of the skin cancer case has motivated the search and the development of computational methods to assist dermatologists in the diagnosis of skin lesions. The main goal of such methods is concerned to the detection of benign skin le-sions to prevent their development, or diagnose malignant lesions at early stages so that they undergo appropriate treatment plans with higher chances of cure. The objective of this paper is to present a computational method for extracting edges of skin lesions from photographic images in order to facilitate the extraction of its main features used for classification. This paper presents a method for the extraction of contours of skin lesions, such as nevi, seborrheic keratosis and melanoma, from images, which uses the technique of anisotropic diffusion to smooth the input images and the active contour model without edges, known as Chan-Vese model, to segment the smoothed image. The application of the anisotropic diffu-sion filter removes selectively the noise present in the input image. The Chan-Vese model is based on the Mumford-Shah region growth technique, common used in image segmentation tasks, and the Level Set Active Contour model, which allows topological changes of the curves applied on the input images to segment them. Then, a morphological filter is applied on the segmented images in order to eliminate holes in the skin lesion regions and also to smooth their edges. Experimental tests have been accomplished to compare the segmentation results obtained by the traditional thresholding method, by the combination of an anisotropic diffusion model and the Chan-Vese model and by the proposed method using grayscale der-matologic images. This comparison has been revealed that the method proposed is effective to detect skin lesions and extract their contours in dermatologic images.

Full Article:

Palavras-chave: Medical Image Analysis, Chan-Vese Model, Anisotropic Diffusion Filter,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-19246

Referências bibliográficas
  • [1] Abbas, Q.; Fondón, I.; Rashid, M. “Unsupervised skin lesions border detection via two-dimensional image analysis”. Computer Methods and Programs in Biomedicine, COMM-3090, p. 1-15, 2010.
  • [2] Alvarez, L.; Lions, P.-L.; Morel, J.-M. “Image Selective Smoothing and Edge Detection by Nonlinear Diffusion”. SIAM Journal on Numerical Analysis, v. 29, n. 3, p. 845-866, 199
  • [3] Araujo, A. F. “Método para extração e caracterização de lesões de pele usando difusão anisotrópica, crescimento de regiões, watersheds e contornos ativos”. Dissertação de Mes-trado em Ciência da computação – Instituto de Biociência, Letras e Ciências Exatas, Uni-versidade Estadual Paulista, São José do Rio Preto, 2010.
  • [4] Barcelos, C. A. Z.; Boaventura, M.; Silva Junior, E. C. “A well-balanced flow equation for noise removal and edge detection”. IEEE Transactions on Image Processing, v. 12, n. 7, p. 751-763, 2003.
  • [5] Barcelos, C. A. Z.; Pires, V. B. “Na automatic based nonlinear diffusion equations scheme for skin lesion segmentation”. Applied Mathematics and Computation, v. 215, p. 251-261, 2009.
  • [6] Beuren, A. T.; Pinheiro, R. J. G.; Facon, J. “Abordagem morfológica de segmentação do melanoma”. In: Workshop de Visão Computacional, 7. Curitiba, 2011, p. 249-254.
  • [7] Celebi, M. E.; Kingravi, H. A.; Iyatomi, H.; Aslandogan, Y. A.; Stoecker, W. V.; Moss, R. H.; Malters, J. M.; Grichnik, J. M.; Marghoob, A. A.; Rabinovitz, H. S.; Menzies, S. W. “Border detection in dermoscopy images using Statistical Region Merging”. Skin Re-search and Technology, v. 14, p. 347-354, 2008.
  • [8] Chan, T. F.; Vese, L. A. “Active contours without edges”. IEEE Transactions on Image Processing, v. 10, n. 2, p. 266-277, 2001.
  • [9] Coser, L. “Filtro de difusão anisotrópica orientado por evidência de borda”. Dissertação de Mestrado em Ciência da computação – Faculdade de Engenharia Elétrica, Universidade Federal de Santa Catarina, Florianópolis, 200
  • [10] Dermatlas. Cohen, B. A.; Lehmann, C. U. Johns Hopkins University - DermAtlas. Dis-ponível em Dermatology Image Atlas: Acesso em: 2012.
  • [11] Dermis. Diepgen TL, Yihune G et al. Dermatology Information System - DermIS. Dis-ponível em Atlas Dermatológico Online: . Acesso em: 2012.
  • [12] Dermatology database. Y. Suzumnura. YSP Dermatology Image Database - Japan. Dis-ponível em YSP Dermatology Image Database: . Acesso: em 20
  • [13] Dong, G.; Palaniappan, K. Benchmarking. “A robust method for edge-preserving image smoothing”. Lecture Notes in Computer Science, v. 5259, p. 390-399, 2008.
  • [14] Gonzalez, R. C.; Woods, R. E. “Digital image processing”. 2. ed. New Jersey: Prentice Hall, 2002. 793 p.
  • [15] INCA. Instituto Nacional De Câncer. “Tipos de câncer: Pele melanoma e pele não me-lanoma”. Disponível em: Andlt; http://www2.inca.gov.brAndgt;. Acesso: em 2012.
  • [16] Marques Filho, O.; Vieira Neto, H. “Processamento Digital de Imagens”. 1. ed. Rio de Janeiro: Brasport, 1999. 307 p.
  • [17] MEDED. J. L. Melton, Andamp; MD, Editores. Skin Cancer and Benign Tumor Image - Loyo-la University - Chicago. Disponível em Loyola University Dermatology Medical Educati-on: . Acesso em 2011.
  • [18] Ministério da saúde; Instituto Nacional De Câncer. “Estimativa 2012: incidência de câncer no Brasil”. Instituto Nacional de Câncer José Alencar Gomes da Silva, Coordena-ção Geral de Ações Estratégicas, Coordenação de Prevenção e Vigilância. Rio de Janeiro: INCA, 2011. 118 p.
  • [19] Mumford, D. Shah, J. “Optimal approximations by piecewise smooth functions and associated variational problems”. Communications on Pure and Applied Mathematics, v. XLII, p. 577-685, 1989.
  • [20] Nordström, K. N. “Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection”. In: Proceedings of The First European Conference on Com-puter Vision, 1990, New York. p. 18-27.
  • [21] Norton, K. –A.; Iyatomi, H.; Celebi, M. E.; Schaefer, G.; Tanaka, M.; Ogawa, K. “De-velopment of a novel border detection method for melanocytic and non-melanocytic dermoscopy images”. In: Annual International Conference of the IEEE EMBS, 32nd. Buenos Aires, Argentina, 2010, p. 5403-5406.
  • [22] Osher, S.; Sethian, J. A. “Fronts propagating with curvature dependent speed: algo-rithms based on Hamilton-Jacobi formulations”. Journal of Computational Physics, v. 79, p. 12-49, 1988.
  • [23] Otsu, N. “A threshold selection method from gray-level histograms”. IEEE Transac-tions on Systems, Man, and Cybernetics, v. SMC-9, p. 62-66, 1979.
  • [24] Perona, P; Malik, “J. Scale-space and edge detection using anisotropic diffusion”. IEEE transactions on pattern analysis and machine intelligence, v. 12, n. 7, p. 629-639, 1990.
  • [25] Zhang, N.; Zhang, J.; Shi, R. “An Improved Chan-Vese model for medical image seg-mentation”. In: International Conference on Computer Science and Software Engineering, Wuhan, Hubei, 2008, p. 864-867.
  • [26] Zhao, J.; Shao, F.; Xu, Y.; Zhang, X.; Huang, W. “An improved Chan-Vese model without reinitialization for medical image segmentation”. In: International Congress on Image and Signal Processing (CISP 2010), 3rd. Yantai, 2010, p. 1317-1321.
Como citar:

Oliveira, Roberta B.; Araujo, Alex F. de; Tavares, João Manuel R. S.; Marranghello, Norian; Rossetti, Ricardo B.; Pereira, Aledir S.; "EXTRAÇÃO DE CONTORNOS DE LESÕES DE PELE UTILIZANDO DIFUSÃO ANISOTRÓPICA E MODELOS DE CONTORNO ATIVO SEM BORDA", p. 3219-3236 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19246

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações