Full Article - Open Access.

Idioma principal

FORMULATION OF A REACTIVE-DIFFUSIVE-CONVECTIVE MODEL SOLVED BY THE FINITE ELEMENT METHOD COUPLED BY SYMMETRIZED STRANG SPLIT

Garcia, D. A. ; Galeano, C. H. ;

Full Article:

This work develops a mass transport model coupled with a reactive kinetics model through the Finite element method, to simulate the behavior of pollutants substances in an urban atmosphere. In this work a Symmetrized Strang Split method is used to couple the mass transport model with the reactive kinetics model. This split method solves separately the diffu-sion, advection and reaction effects in a cascade process. The formulation of the mass transport process is showed and its results are compared with a fully coupled finite element method. This comparison is important to show the solution time and computational cost and validity of the split model.

Full Article:

Palavras-chave: Finite element method, Symmetrized Strang Split, mass transport model, cascade process.,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-20004

Referências bibliográficas
  • [1] Volker, J., Mitkova, T., Roland, M., Sundmacher, K., Tobiska, L., Voigt, A., Simulations of population balance systems with one internal coordinate using finite element methods. Chemical Engineering Science 64, 733-741, 2009.
  • [2] Geiger,G.H., Poirier, D.R. Transport phenomena in Metallurgy. Addison Wesley Publis-hing co, 1973.
  • [3] Zienkiewicz, O.C., Taylor, R.L. THE FINITE ELEMENT METHOD Volume 1 THE BASIS. Oxford: Butterworth-Heinemann, 2000.
  • [4] Galeano, C.H., Garzon, D.A., Mantilla J.M. A comparison between characteristic lines and streamline upwind Petrov-Galerkin method for advection dominates problem. Rev. Fa. Ing. Univ. Antioquia 52, 134-146, 2009.
  • [5] Zhao, S., Ovadia, J., Liu, X., Zhang, Y., Nie, Q. Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems. Journal of Computational Physics. SplitCoupled50000400003000020000100000Numerical methodMean
  • [6] Bernstein, J.A. Health effects of air pollution. Environmental and occupational respirato-ry disorders 114(5), 1116-1123, 2004.
  • [7] Santamaria J.M. Efectos del material particulado en la salud. Zona hospitalaria 10, 32-33, 2008.
  • [8] Baik, J-J., Kim, J-J. A numerical study of flow and pollutant dispersion characterustics in urban street canyons. J. Appl. Meteor. 38, 1576-1589, 1999.
  • [9] Vardoulakis, S., Fisher, E.A., Pericleousa, K., Gonzalez-Flescac, N. Modeling air quality in street canyons: a review. Atmospheric Environment 37, 155-182, 2003.
  • [10] Yang, Y., Shao, Y. Numerical simulation of flow and pollution dispersion in urban at-mospheric boundary layers. Environmental Modeling Andamp; Software 23, 906-921, 2008.
  • [11] Garzon, D., Galeano C., Mantilla, J. Space-time stability analysis of the streamline up-wind Petrov-Galerkin method for diffusion-advection equations. Dyna 162, 359-369, 2010.
  • [12] Lewis, R.W., Nithiarasu, P., Seetharamu, K.N. Fundamentals of the Finite Element Method for Heat and Fluid Flow. John Wile Andamp; Sons Ltd, 2004.
  • [13] Lanser, D., Verwer J.G. Analysis of operator splitting for advection diffusion reaction problems form air pollution modeling. Journal of Computational and Applied Mathema-tics 111, 201-216, 1998.
  • [14] Hundsdorfer W. Numerical solution of advection diffusion reaction equations. Lecture notes, Thomas Stieltjes Institute, 2000.
  • [15] Baik, J-J., Kang, Y-S., Kim, J-J. Modeling reactive pollutant dispersion in and urban street canyon. Atmospheric Environment 41, 934-949, 2006.
Como citar:

Garcia, D. A.; Galeano, C. H.; "FORMULATION OF A REACTIVE-DIFFUSIVE-CONVECTIVE MODEL SOLVED BY THE FINITE ELEMENT METHOD COUPLED BY SYMMETRIZED STRANG SPLIT", p. 4618-4633 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-20004

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações