Full Article - Open Access.

Idioma principal | Segundo idioma

INNOVATIVE METHOD FOR THE SYNTHESIS OF Ti/SnO2-Sb ANODES USING POLYVINYL ALCOHOL

INNOVATIVE METHOD FOR THE SYNTHESIS OF Ti/SnO2-Sb ANODES USING POLYVINYL ALCOHOL

Araújo, Maria Fernanda Borges ; Oliveira, José Fabrício Menezes de ; Andrade, Ana Carolina Araujo ; Vieira, Danielle Siqueira ; Eguiluz, Katlin Ivon Barrios ; Salazar-Banda, Giancarlo Richard ;

Full Article:

"In electrochemical oxidation, non-active anodes are particularly promisingdue to their ability to facilitate the oxygen release reaction at high potentials. In thisstudy, we synthesized non-active Ti/SnO2-Sb (94:6) anodes using polyvinyl alcohol asa solvent for the metal precursors, aiming to increase stability and improveelectrocatalytic properties. The anodes were prepared via thermal deposition, and theeffects of three different calcination temperatures (500, 550, and 600 °C) weresystematically investigated, with a heating rate of 3 °C min⁻¹. Physical andelectrochemical characterizations revealed that the anode synthesized at 600 °Cpresented a more uniform coating, resulting in an operational lifetime of 5.9 hours.Thus, the calcination temperature impacts the performance of Ti/SnO2-Sb anodes."

Full Article:

"In electrochemical oxidation, non-active anodes are particularly promisingdue to their ability to facilitate the oxygen release reaction at high potentials. In thisstudy, we synthesized non-active Ti/SnO2-Sb (94:6) anodes using polyvinyl alcohol asa solvent for the metal precursors, aiming to increase stability and improveelectrocatalytic properties. The anodes were prepared via thermal deposition, and theeffects of three different calcination temperatures (500, 550, and 600 °C) weresystematically investigated, with a heating rate of 3 °C min⁻¹. Physical andelectrochemical characterizations revealed that the anode synthesized at 600 °Cpresented a more uniform coating, resulting in an operational lifetime of 5.9 hours.Thus, the calcination temperature impacts the performance of Ti/SnO2-Sb anodes."

Palavras-chave: Polyvinyl alcohol, Electrodes, Mixture of metal oxides, Electrocatalysis,

Palavras-chave: Polyvinyl alcohol, Electrodes, Mixture of metal oxides, Electrocatalysis,

DOI: 10.5151/siintec2024-393300

Referências bibliográficas
  • [1] "1 GARCIA-SEGURA, S.; OCON, J. D.; CHONG, M. N. Electrochemical oxidation
  • [2] remediation of real wastewater effluents- A review. Process Safety and
  • [3] Environmental Protection, v. 113, p. 48–67, 2018.
  • [4] 2 SHESTAKOVA, M.; BONETE, P.; GÓMEZ, R.; SILLANPÄÄ, M.; TANG, W. Z. Novel
  • [5] Ti/Ta2O5-SnO2 electrodes for water electrolysis and electrocatalytic oxidation of
  • [6] organics. Electrochimica Acta, v. 120, p. 302–307, 2014.
  • [7] 3 MARTÍNEZ-HUITLE, C. A.; PANIZZA, M. Electrochemical oxidation of organic
  • [8] pollutants for wastewater treatment. Current Opinion in Electrochemistry, v. 11,
  • [9] n. 1, p. 62–71, 2018.
  • [10] 4 LIU, Z.; ZHU, M.; ZHAO, L.; DENG, C.; MA, J.; WANG, Z.; LIU, H.; WANG, H.
  • [11] Aqueous tetracycline degradation by coal-based carbon electrocatalytic filtration
  • [12] membrane: effect of nano antimony-doped tin dioxide coating. Chemical
  • [13] Engineering Journal, v. 314, p. 59–68, 2017.
  • [14] 5 ZHOU, M.; SÄRKKÄ, H.; SILLANPÄÄ, M. A comparative experimental study on
  • [15] methyl orange degradation by electrochemical oxidation on BDD and MMO
  • [16] electrodes. Separation and Purification Technology, v. 78, p. 290–297, 2011.
  • [17] 6 SNOWDON, M. RATHOD, S.; FATTAHI, A.; KHAN, A.; BRAGG, L.; LIANG, R.;
  • [18] ZHOU, N.; SERVOS, M. Water Purification and Electrochemical Oxidation: Meeting
  • [19] Different Targets with BDD and MMO Anodes. Environments, v. 9, n. 135, 2022.
  • [20] 7 CAO, F.; TAN, J.; ZHANG, S.; WANG, H.; YAO, C.; LI, Y Preparation and Recent
  • [21] Developments of Ti/SnO2-Sb Electrodes. Journal of Chemistry, v. 2021, p. 1–13,
  • [22] 2021.
  • [23] 8 LEKSHMY, S.; DANIEL, G.; JOY, K. Microstructure and physical properties of sol-gel
  • [24] derived SnO2:Sb thin films for optoelectronic applications. Applied Surface Science,
  • [25] v. 274, p. 195–100, 2013.
  • [26] 9 LIU, F.; ZHANG, X.; XIAO, X.; DUAN, Q.; BAI, H.; CAO, Y.; ZHANG, Y.; ALEE, M.;
  • [27] YU, L. Improved hydrophobicity, antibacterial and mechanical properties of polyvinyl
  • [28] alcohol/quaternary chitosan composite films for antibacterial packaging.
  • [29] Carbohydrate Polymers, v. 312, 2023.
  • [30] 10 CHEN, Y.; HONG, L.; XUE, H.; HAN, W.; WANG, L.; SUN, X.; LI, J. Preparation and
  • [31] characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition. Journal of
  • [32] Electroanalytical Chemistry, v. 648, p. 119–127, 2010.
  • [33] 11 SHAO, D.; YAN, W.; LI, X.; YANG, H.; XU, H. A Highly Stable
  • [34] Ti/TiHx/Sb−SnO2Anode: Preparation, Characterization and Application. Industrial
  • [35] and Engineering Chemistry Research, v. 53, p. 3898–3907, 2014.
  • [36] 12 BEZERRA, C. W. A.; SANTOS, G. O. S.; PUPO, M. M. S.; GOMES, M. A.; SILVA,
  • [37] R. S.; EGUILUZ, K. I. B.; BANDA, G. R. S. Novel eco-friendly method to prepare
  • [38] Ti/RuO2–IrO2 anodes by using polyvinyl alcohol as the solvent. Journal of
  • [39] Electroanalytical Chemistry, v. 859, 2020.
  • [40] 13 NASIBI, S.; NARGESI, K. H.; AREFIAN, M.; HOJJATI, M.; TAJZAD, I.;
  • [41] MOKHTARZADE, A.; MAZHAR, M.; JAMAVARI, A. A review of Polyvinyl alcohol /Carboxymethyl cellulose (PVA/CMC) composites for various applications. Journal
  • [42] of Composites and Compounds, v. 2(3), p. 68–75, 2020.
  • [43] 14 DEMERLIS, C. C.; SHONEKER, D. R. Review of the oral toxicity of polyvinyl alcohol
  • [44] (PVA). Food and Chemical Toxicology, v. 41, p. 319–326, 2003.
  • [45] 15 KARMAKER, N.; KARMAKER, H.; KHAN, R. A Review on PVA Based
  • [46] Biodegradable Films: A New Hope for Plastic Pollution Remediation. Journal of
  • [47] Asian and African Social Science and Humanities, v. 7, n. 1, p. 26–37, 2021.
  • [48] 16 KOCHIKINA, N. E. et al. Ecofriendly films based on low-substituted starch acetate
  • [49] enhanced by polyvinyl alcohol. Iranian Polymer Journal, v. 31, p. 1361–1371, 2022.
  • [50] 17 SANTOS, T.; SILVA, R. S.; JARA, C. C.; EGUILUZ, K. I. B.; SALAZAR-BANDA, G.
  • [51] R. The influence of the synthesis method of Ti/RuO2 electrodes on their stability and
  • [52] catalytic activity for electrochemical oxidation of the pesticide carbaryl. Materials
  • [53] Chemistry Physics, 148(1−2). p. 39−47, 2014.
  • [54] 18 KARIMI, A. NAVIDBAKHSH, M. Mechanical properties of PVA material for tissue
  • [55] engineering applications. Materials Technology, v. 29(2), p. 90–100, 2014.
  • [56] 19 FENG, Y. CUI, Y.; LOGAN, B.; LIU, Z. Performance of Gd-doped Ti-based Sb-SnO2
  • [57] anodes for electrochemical destruction of phenol. Chemosphere, v. 70(9), p. 1629–
  • [58] 1636, 2008.
  • [59] 20 SONG, Y. F.; LIU, J. M.; GE, F.; HUANG, X. ZHANG, Y.; GE, H. H.; MENG, X. J.
  • [60] Influence of Nd-doping on the degradation performance of Ti/Sb-SnO2electrode.
  • [61] Journal of Environmental Chemical Engineering, v. 9, 2021.
  • [62] 21 WANG, Y. FAN, C.; HUA, B.; LIANG, Z.; SUN, Y. Photoelectrocatalytic activity of
  • [63] two antimony doped SnO2 films for oxidation of phenol pollutants. Transactions of
  • [64] Nonferrous Metals Society of China, v. 19, p. 778–783, 2009.
  • [65] 22 WANG, G.; ZHANG, H.; WANG, W.; ZHANG, X.; ZUO, Y.; TANG, Y.; ZHAO, X.
  • [66] Fabrication of Fe-TiO2-NTs/SnO2-Sb-Ce electrode for electrochemical degradation
  • [67] of aniline. Separation and Purification Technology, v. 268, 2021.
  • [68] 23ZHANG, L.; XU, L.; HE, J.; ZHANG, J. Preparation of Ti/SnO2-Sb electrodes modified
  • [69] by carbon nanotube for anodic oxidation of dye wastewater and combination with
  • [70] nanofiltration. Electrochimica Acta, v. 117, p. 192–201, 2014.
  • [71] 24 SANTOS, G. O. S.; VASCONCELOS, V. M.; DA SILVA, R. S.; RODRIGO, M. A.;
  • [72] EGUILUZ, K. I. B.; SALAZAR-BANDA, G. R. New laser-based method for the
  • [73] synthesis of stable and active Ti/SnO2-Sb anodes. Electrochimica Acta, v. 332,
  • [74] 2020.
  • [75] 25 LIM, D.; KIN, Y.; NAM, D.; HWANG, S.; SHIM, S.; BAECK, S. Influence of the Sb
  • [76] content in Ti/SnO2-Sb electrodes on the electrocatalytic behavior for the degradation
  • [77] of organic matter. Journal of Cleaner Production, v. 197, p. 1268–1274, 2018.
  • [78] 26 SANTOS, G. O. S.; SILVA, L. R. A.; ALVES, Y. G. S.; SILVA, R. S.; EGUILUZ, K. I.
  • [79] B.; SALAZAR-BANDA, G. R. Enhanced stability and electrocatalytic properties of
  • [80] Ti/RuxIr1−xO2 anodes produced by a new laser process. Chemical Engineering
  • [81] Journal, v. 355, p. 439–447, 2019.
  • [82] 27 NIU, J.; BAO, Y.; LI, Y.; CHAI, Z. Electrochemical mineralization of
  • [83] pentachlorophenol (PCP) by Ti/SnO2-Sb electrodes. Chemosphere, v. 92, p. 1571–
  • [84] 1577, 2013.
  • [85] 28 DING H.; FENG, Y.; LU, L. Study on the service life and deactivation mechanism of
  • [86] Ti/SnO2-Sb electrode by physical and electrochemical methods. Russian Journal
  • [87] of Electrochemistry, v. 46, p. 72–76, 2010."
Como citar:

Araújo, Maria Fernanda Borges; Oliveira, José Fabrício Menezes de; Andrade, Ana Carolina Araujo; Vieira, Danielle Siqueira; Eguiluz, Katlin Ivon Barrios; Salazar-Banda, Giancarlo Richard; "INNOVATIVE METHOD FOR THE SYNTHESIS OF Ti/SnO2-Sb ANODES USING POLYVINYL ALCOHOL", p. 945-952 . In: . São Paulo: Blucher, 2024.
ISSN 2357-7592, DOI 10.5151/siintec2024-393300

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações