Full Article - Open Access.

Idioma principal

LARGE DEFLECTION OF COMPOSITE LAMINATE THIN PLATES BY THE BOUNDARY ELEMENT METHOD

Silveira, L. C. ; Albuquerque, E. L. ;

Full Article:

Boundary-integral equations for large deflections of thin plates are presented. Quadratic boundary elements are used to discretise the boundary. Domain integrals that arise from non-linear terms are transformed into boundary integrals using the radial integration method. As a result, the obtained formulation does not demand domain discretization. For the solution of the non-linear system, the total incremental method is used. A numerical example is presented and comparisons with other numerical results are made to demonstrate the accuracy of the proposed method. The formulation illustrates the adaptability of the boundary element methods to non-linear problems.

Full Article:

Palavras-chave: Boundary Element Method, Radial Integration Method, Thin Plates,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18299

Referências bibliográficas
  • [1] M. H. Aliabadi. ”Boundary element method, the application in solids and structures.” John Wiley and Sons Ltd New York, 2002.
  • [2] J. Purbolaksono and M. H. Aliabadi. ”Buckling analysis of shear deformable plates by boundary element method.” International Journal for Numerical Methods in Engineering 62:537-563, 2005.
  • [3] P. H. Wen, M. H. Aliabadi, and A. Young. ”Large deflection analysis of reissner plate by boundary element method.” Computers and Structures 83:870ˆa879, 2005.
  • [4] P. H. Wen, M. H. Aliabadi, and A. Young. ”A post buckling analysis of reissner plates by the boundary element method.” Journal of Strain Analysis for Engineering Design 41:239ˆa252, 2006.
  • [5] J. Purbolaksono and M. H. Aliabadi. ”Large deformation of shear-deformable plates by the boundary-element method.” Journal of Engineering Mathematics 51:211ˆa230, 200
  • [6] C. Y. Chia. ”Nonlinear analysis of plates.” MacGraw-Hill New York, 1980.
  • [7] G. Shi. ”Flexural vibration and buckling analysis of orthotropic plates by the boundary element method.” J. of Solids and Structures 26:1351ˆa1370, 1990.
  • [8] P. E. OˆaDonoghue e S. N. Atluri. ”Field/boundary element method approach to the large deflexion of thin flat plates.” Computers and Structures pages 427ˆa435, 1987.
  • [9] P. Sollero and M. H. Aliabadi. ”Fracture mechanics analysis of anisotropic plates by the boundary element method.” Int. J. of Fracture 64:269ˆa284, 1993.
  • [10] E. L. Albuquerque, P. Sollero, W. Venturini, and M. H. Aliabadi. ”Boundary element analysis of anisotropic kirchhoff plates.” International Journal of Solids and Structures 43:4029ˆa4046, 2006.
  • [11] E. L. Albuquerque and M. H. Aliabadi. ”A boundary element formulation for boundary only analysis of thin shallow shells.” CMES - Computer Modeling in Engineering and Sciences 29:63ˆa73, 2008.
Como citar:

Silveira, L. C.; Albuquerque, E. L.; "LARGE DEFLECTION OF COMPOSITE LAMINATE THIN PLATES BY THE BOUNDARY ELEMENT METHOD", p. 1201-1209 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18299

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações