Full Article - Open Access.

Idioma principal

MACROSCOPIC PARTICLE MODELING OF ELASTIC AND PLASTIC DEFORMATION IN METALS: A MULTISCALE APPROACH BASED ON INTERATOMIC POTENTIAL AND CRYSTAL STRUCTURE

Saitoh, K. ; Hanashiro, N. ; Koizumi, S. ; Ogita, S. ;

Full Article:

We formulate a macroscopic particle modeling analysis of metallic materials (aluminum and copper, etc.) based on theoretical energy and atomic geometries derivable from their interatomic potential. In fact, particles in this framework are presenting a large mass composed of huge collection of atoms and are interacting with each other. We can start from cohesive energy of metallic atoms and basic crystalline unit (e.g. face-centered cubic). Then we can reach to interparticle (macroscopic) potential function which is presented by the terms of exponent of inter-particle distance, like a Lennard- Jones potential used in molecular dynamics simulation. Equation of motion for these macroscopic particles has both dissipative term and fluctuation term, as well as the conservative term above, in order to express finite temperature condition. First, we determine the parameters needed in macroscopic potential function and check the reproduction of mechanical behavior in elastic regime. By using the present framework, we carry out uniaxial loading simulation of aluminum rod. The method can reproduce Young’s modulus and Poisson’s ratio as elastic behavior, though the result shows the dependency on division number of particles. Then, we proceed to include plasticity in this multiscale framework. As a result, a realistic curve of stress-strain relation can be obtained for tensile and compressive loading.

Full Article:

Palavras-chave: Molecular dynamics, Particle method, Elasticity, Plasticity, Multiscale analysis,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18300

Referências bibliográficas
  • [1] Saitoh, K. and Liu, W.K., ”Molecular dynamics study of surface effect on martensitic cubic-totetragonal transformation in Ni-Al alloy”, Comput.Mater.Sci., 46, 531-544, 2009.
  • [2] Liu,W.K. and McVeigh,C., ”Predictive multiscale theory for design of heterogeneous materials”, Comput.Mech., 42(2), 147-170, 2007.
  • [3] Curtin, W. and Miller, R.E., ”Atomistic/continuum coupling in computational materials science”, Modelling Simul.Mater.Sci.Eng., 11, R33-R68, 200
  • [4] Knap, J. and Ortiz, M., ”An analysis of the quasicontinuum method”, J.Mech.Phys.Solids, 49, 1899-1923, 2001.
  • [5] Qian, D.,Wagner, G.J. and Liu,W.K., ”A multiscale projection method for the analysis of carbon nanotubes”, Comput.Methods Appl.Mech.Engrg., 193, 1603-1632, 2004.
  • [6] Allen, M.P. and Tildesley, D.J., Computer simulation of liquids, Oxford University Press, 1987.
  • [7] Greenspan, D., ”Supercomputer simulation of Liquid drop formation on a solid surface”, Int. J. Num. Methods in Fluids, 13, 895-906, 1991. : Greenspan, D., ”Particle modeling”, Birkhauser, 199
  • [8] Wang, G, Al-Ostaz, A., Cheng, A.H.-D. and Mantena, P.R., ”Hybrid lattice particle modeling: Theoretical consideration for a 2D elastic spring network for dynamic fracture simulations”, Comp. Mater. Sci., 44, 1126-1134, 2009. : Wang, G, Al-Ostaz, A., Cheng, A.H.-D. and Mantena, P.R., ”Hybrid lattice particle modeling of wave propagation induced fracture of solids”, Comp. Methods Appl. Mech. Eng., 199, 197-209, 2009.
  • [9] Lucy, L.B. ”A Numerical Approach to the Testing of the Fission Hypothesis”, Astronomical J., 82, 1013-1024, 1977.
  • [10] Monaghan, J.J., ”Smoothed Particle Hydrodynamics”, Annu.Rev.Astron.Astrophys., 30, 543-574, 1992.
  • [11] Libersky, L.D. Petschek, A.G., Carney,T.C. and Allahdadi, F.A., ”High Strain Lagrangian Hydrodynamics”, J.Comp.Phys., 109, 67-75, 1993.
  • [12] Hoover,Wm.G. and Posch, H.A., ”Numerical Heat Conductivity in Smooth Particle Applied Mechanics”, Phys.Rev.,E, 54, 5142-5145, 1996.
  • [13] Randles, P.W. and Libersky, L.D., ”Smoothed Particle Hydrodynamics: Some Recent Improvements and Applications”, Comput.Methods Appl.Mech.Engrg., 139, 375-408, 1996.
  • [14] Li, S. and Liu, W.K., ”Meshfree and particle methods and applications”, Appl.Mech.Rev., 55, 1-34, 2002.
  • [15] Kinjo, T. and Hyodo, S.-A., ”Equation of motion for Coarse-grained Simulation based on Microscopic description”, Phys.Rev.,E, 75, 051109.1-9, 2007.
  • [16] Lei,H., Caswell,B. and Karniadakis,G.E., ”Direct Construction of mesoscopic models from icroscopic simulations”, Phys.Rev.,E, 81, 026704.1-10, 2010.
  • [17] Hoogerbrugge,P.J. and Koelman,J.M.V.A., ”Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics”, Europhys.Lett., 19 155-160, 1992.
  • [18] Satoh, A., ”Introduction to Practice of Molecular Simulation”, Elsevier, 2011.
  • [19] Maruyama, S. and Choi, S.H., ”Molecular dynamics of heat conduction through carbon nanotube”, Thermal Sci. Eng., 9-3, 17-24, 2001.
Como citar:

Saitoh, K.; Hanashiro, N.; Koizumi, S.; Ogita, S.; "MACROSCOPIC PARTICLE MODELING OF ELASTIC AND PLASTIC DEFORMATION IN METALS: A MULTISCALE APPROACH BASED ON INTERATOMIC POTENTIAL AND CRYSTAL STRUCTURE", p. 1210-1222 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18300

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações