Artigo Completo - Open Access.

Idioma principal | Segundo idioma

Measuring the technological coherence of environmental technologies with the industry knowledge base

Measuring the technological coherence of environmental technologies with the industry knowledge base

Urraca-Ruiz, Ana ; MIRANDA, Pedro ; AVANCI, Vanessa de Lima ;

Artigo Completo:

Este artigo avalia a importância das tecnologias ambientais (ET) na base de conhecimento de 21 setores industriais a partir de uma nova metodologia baseada em análise de redes. Para isto, considera-se que a base de conhecimento industrial deve consistir no só na simples agregação das competências tecnológicas das firmas, mas também pela forma especifica em que as indústrias combinam e desenvolvem novo conhecimento. Inspirado no trabalho seminal de Patel e Pavitt (1997), o trabalho elabora indicadores de centralidade e relacionamento para construir uma taxonomia hierárquica que classifica as classes de tecnologias ambientais em quatro categorias: central, nicho, de fundo e marginal. O trabalho usa dados de patentes depositadas por empresas industriais no Escritório Europeu de Patentes entre 1980-2012. Os principais resultados são os seguintes. Primeiro, os principais criadores de ET são também as indústrias mais poluentes: agricultura, carvão e petróleo, química e veículos-motor. Segundo, os índices de concentração, diversificação e especialização apontam que os investimentos em inovações ambientais são ainda muito baixas e concentradas em poucos setores relacionados com a redução da polução e biofuels. E, terceiro, a metodologia baseada na análise de redes reforça os resultados anteriores, mas estende o conjunto de conhecimento central ao qual se vinculam as tecnologias ambientais, incluindo também as energias renováveis e a mitigação de emissões GHG. Isto revela que a relacionabilidade do conhecimento deve ser considerada nas análises dos perfis tecnológicos da indústria.

Artigo Completo:

This paper evaluates the importance of environmental technologies (ET) in the base pf knowledge of 21 industries by using a new methodology based on analysis of networks. To do that, we consider that industry base of knowledge must consist not only in the addition of the technological competences of the firms, but also in the specific way by which industries combine and develop new knowledge. Inspired in the Patel and Pavitt’s (1997) seminal work, we elaborate indicators of centrality and relatedness to build a hierarchical taxonomy that classifies environmental technological classes in four categories by industry: central (core), niche, background and marginal. The paper uses data from patent applications filed at European Patent Office in the 1980-2012 period by industrial companies from 21 industrial sectors. The main results are the following. First, the main creators of ET are also the main pollutant industries: agriculture, coke and petroleum, chemical and motor vehicles. Second, concentration, diversification and specialization indexes point out that investments in environmental innovation are still very low and concentrated in few technical fields, highlighting technologies related to pollution abatement and biofuels. Third, the methodology based on network analysis reinforced previous results, but extend the set of central-knowledge to which the ET are linked in, including also technologies related to renewable energy sources and GHG emissions mitigation. Thus, it reveals that knowledge relatedness matters and must be taken into account in the analysis of the industrial technological profiles.

Palavras-chave: Tecnologias ambientais, inovações ambientais, base industrial de conhecimento, relacionamento, centralidade, redes de conhecimento,

Palavras-chave: Environmental technologies, industry base of knowledge, relatedness, centrality, knowledge networks,

DOI: 10.5151/enei2017-81

Referências bibliográficas
  • [1] Bönte W. and Dienes. C. (2013). Environmental Innovations and Strategies for the Development of New Production Technologies: Empirical Evidence from Europe. Bus. Strat. Env. (2013) Published online in Wiley Online Library. DOI: 10.1002/bse.1753
  • [2] Breschi, S., Lissoni, F., Malerba, F. (2003). “Knowledge-relatedness in firm technological diversification”. Research Policy, 32, 69–87.
  • [3] Chiu, Y.D; Lai, H.C, Lee, T.Y and Liaw, Y.D (2008). “Technological diversification, complementary assets and performance”. Technological Forecasting & Social Change, 75, 875-892.
  • [4] (COM), European Commission (2011). The Eco-innovation Action Plan (ECO-AP). Brussels 899 final.
  • [5] CZARNITZKI, D.; KRAFT, K.; THORWARTH, S. (2009) The knowledge production of R and D. Economics Letters, v. 105, n. 1, p. 141-143.
  • [6] Danguy et al. (2013) On the origins of the worldwide surge in patenting: an industry perspective on the R&D-patent relationship. Disponível em: ; . Acesso em: 10 jul. 2013
  • [7] DE RASSENFOSSE, G.; DE LA POTTERIE, B. P. (2009) A policy insight into the R&D–patent relationship. Research Policy, Amsterdã, v. 38, n. 5, p. 779-792.
  • [8] DING, Ying et al. (2009) PageRank for ranking authors in co‐citation networks. Journal of the American Society for Information Science and Technology, v. 60, n. 11, p. 2229-2243
  • [9] Frenken, K., Van Oort, F., Verburg, T. (2007). “Related Variety, Unrelated Variety and Regional Economic Growth “. Regional Studies, 41 (5), 685–697.
  • [10] GRILICHES, Z. (1990) Patent statistics as economic indicators: a survey. Journal of Economic Literature, v. 28, p. 1661-1707.
  • [11] Kemp, R. and Pontoglio, S. (2007). Final report of the MEI project measuring eco innovation. UNU MERIT. Maastricht.
  • [12] Nagoaka, S; Walsh, J. (2009) The R&D process in the U.S. and Japan: major findings from the RIETI-Georgia Tech inventor survey. RIETI Dicussion Paper, DP 09-E-010.
  • [13] OCDE (2009a). Eco-innovation in industry: enabling green growth. Paris: OECD
  • [14] OCDE (2009b). Patent statistics manual. Paris: OECD.
  • [15] PATEL, P., PAVITT, K. (1997) “The technological competencies of the world’s largest firms: complex and path dependent, but not much variety”. Research Policy, v. 26, n. 2, p. 141-156.
  • [16] PERRA, Nicola; FORTUNATO, Santo. (2008) Spectral centrality measures in complex networks. Physical Review E, v. 78, n. 3, p. 036107.
  • [17] Saviotti, P. P. (2009) Knowledge Networks: structure and dynamics. In: Innovation Networks: developing an integrated approach, ed. A. Pyka and A. Scharnorst, p. 19-42. Heidelberg: Springer Verlag.
  • [18] Teece. D.J., Rumelt, R., Dosi, G., and Winter, S. (1994). “Understanding corporate coherence. Theory and evidence”. Journal of Economic Behavior and Organization, 23, 1-30.
  • [19] (UNFCCC) United Nations Framework Convention on Climate Change, (2009). Reducing vulnerability to climate change and environmental challenges. Environmental and developmental Challenges and opportunities. May. http://unfccc.int/resource/docs/publications/ldc_reducingvulnerability.pdf
Como citar:

Urraca-Ruiz, Ana; MIRANDA, Pedro; AVANCI, Vanessa de Lima; "Measuring the technological coherence of environmental technologies with the industry knowledge base", p. 1518-1537 . In: . São Paulo: Blucher, 2017.
ISSN 2357-7592, DOI 10.5151/enei2017-81

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações