Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Nanolubrificantes aplicados na indústria automotiva

Nanolubricants applied in the automotive industry

AMARAL, Camila Novo da Rocha ; VEIGA, Thiago Ferreira ; MARQUES, Leandro Bordalo Schmidt ; DUDA, Leonardo Ribeiro ;

Trabalho completo:

A crescente demanda por produtos com maior desempenho, menores custos de fabricação, com menor impacto sobre o meio ambiente e que, ao mesmo tempo, sejam mais eficientes em termos de energia, incentivou a pesquisa em várias áreas da nanociência e da nanotecnologia. No setor automotivo, a fim de melhorar o desempenho do motor e contribuir para a economia de combustível, as nanopartículas têm sido estudadas para aplicação em sistemas mecânicos. No entanto, a ampla aplicação de nanolubrificantes é prejudicada pela tendência das nanopartículas de se aglomerarem e precipitarem. Com base nesse contexto, o presente estudo teve como objetivo desenvolver nanolubrificantes e avaliar a capacidade de estabilidade das formulações, bem como o poder de contribuição das nanopartículas inseridas na redução significativa do atrito e do desgaste em componentes móveis. As amostras de nanolubrificantes foram formuladas pela incorporação das nanopartículas ao óleo básico por meio de dispersão em um banho ultrassônico. O estudo foi realizado inicialmente por meio do teste de estabilidade visual, quantificado por espectroscopia de absorção no visível (400-1000 nm) e testes tribológicos de coeficiente de atrito e cicatriz de desgaste no equipamento Four-ball. Após os testes tribológicos, os corpos de prova foram analisados em um microscópio óptico para comprovar e quantificar os dados obtidos. Os resultados indicaram sinais de perda de estabilidade das formulações em um dia, com um percentual médio de precipitação de 35,94 a 54,76% de nanoaditivo, indicando a necessidade do uso de tensoativos capazes de melhorar a estabilidade das formulações. Nos testes tribológicos, os nanolubrificantes demonstraram alta eficiência nas propriedades lubrificantes, reduzindo significativamente o coeficiente de atrito em 25,43% e a cicatriz de desgaste em 50,97% para a formulação G100 (100 ppm de grafeno).

Trabalho completo:

The growing demand for products with higher performance, lower manufacturing costs, with less impact on the environment and that at the same time are more energy efficient, has encouraged research in various areas of nanoscience and nanotechnology. In the automotive sector, in order to improve engine performance and contribute to fuel economy, nanoparticles have been studied for application in mechanical systems. However, the wide application of nanolubricants is hampered by the tendency of nanoparticles to agglomerate and precipitate. Based on this context, the present study aimed to develop nanolubricants and evaluate the stability capacity of the formulations, as well as the contribution power of the inserted nanoparticles in significantly reducing friction and wear in moving components. The nanolubricant samples were formulated by incorporating the nanoparticles into base oil by dispersion in an ultrasonic bath. The study was conducted initially through the visual stability test, quantified by absorption spectroscopy in the visible (400-1000 nm) and tribological tests of friction coefficient and wear scar in the Four-ball equipment. After the tribological tests, the test specimens were analyzed under an optical microscope to prove and quantify the data obtained. The results indicated signs of loss of stability of the formulations in one day, with an average percentage precipitation of 35.94 at 54.76 % of nanoadditive, indicating the need for the use of surfactants capable of improving the stability of the formulations. In tribological tests the nanolubricants demonstrated high efficiency in lubricating properties, significantly reducing the coefficient of friction by 25.43 % and the wear scar by 50.97 % for the G100 formulation (100 ppm graphene).

Palavras-chave: ,

Palavras-chave: ,

DOI: 10.5151/simea2023-PAP19

Referências bibliográficas
  • [1] " HOLMBERG, K.; ERDEMIR, A. Global impact of friction
  • [2] on energy consumption, economy and environment. FME
  • [3] Transactions, v.43, n.3, p.181– 185, 2011.
  • [4] 2. HOLMBERG K, ERDEMIR A. The impact of tribology
  • [5] on energy use and CO2 emission globally and in combustion
  • [6] engine and electric cars. Tribol Int, v.135, n.3, p. 389-396,
  • [7] 2019.
  • [8] 3. HOLMBERG, K.; ERDEMIR, A. Influence of tribology
  • [9] on global energy consumption, costs and emissions. Friction,
  • [10] v5, n3, p263-284, 2017.
  • [11] 4. CHOI S.U.S.; EASTMAN, J. A. Enhancing thermal
  • [12] conductivity of fluids with nanoparticles. In: International
  • [13] mechanical engineering congress & exposition, v.1,
  • [14] n.8,1995.
  • [15] 5. STANKOVICH, S.; DIKIN, A.D.; DOMMETT1, G.H.G.
  • [16] Graphene-based composite materials. Nature, n.442, p.182-
  • [17] 286, 2006.
  • [18] 6. ZHENG, D., CAI, Z.-B., SHEN, M.-X., LI, Z.-Y., & ZHU,
  • [19] M.-H. Investigation of the tribology behaviour of the
  • [20] graphene nanosheets as oil additives on textured alloy
  • [21] cast iron surface. Applied Surface Science, n.387, p.66-75,
  • [22] 2016.
  • [23] 7. CHAN, J.X.; JOON FATT WONG, J.F. Effect of
  • [24] Nanofillers on Tribological Properties of Polymer
  • [25] Nanocomposites: A Review on Recent Development.
  • [26] Journal Polymers, n.13, p.2867, 2021.
  • [27] 8. BAI, G; WANG, J; YANG, Z; WANG, H. Preparation of a
  • [28] highly effective lubricating oil additive – ceria/graphene
  • [29] composite. Royal Society of Chemistry, n. 4, p.47096–
  • [30] 47105, 2016
  • [31] 9. ASTM STANDARDS. ASTM D4172-21 Standard Test
  • [32] Method for Wear Preventive Characteristics of Lubricating
  • [33] Fluid (Four-ball Method. ASTM International, 2021.
  • [34] 10. YU, WEI; XIE, Huaqing. A Review on Nanofluids:
  • [35] Preparation, Stability Mechanisms, and Applications.
  • [36] Journal of Nanomaterials, v.2012, p.1–17, 2012.
  • [37] 11. KIM, SEDONG. Experimental investigation of dispersion
  • [38] characteristics and thermal conductivity of various
  • [39] surfactants on carbon-based nanomaterial. International
  • [40] Communications in Heat and Mass Transfer, n.91, v.7,
  • [41] p.95–102, 2018.
  • [42] 12. ZHANG, H. Stability, thermal conductivity, and
  • [43] rheological properties of controlled reduced graphene oxide
  • [44] dispersed nanofluids. Applied Thermal Engineering, v.119,
  • [45] p.132–139, 2017.
  • [46] 13. ESWARAIAH, V.; SANKARANARAYANAN, V.;
  • [47] RAMAPRABHU, S. Graphene-Based Engine Oil Nanofluids
  • [48] for Tribological Applications. ACS Applied Materials &
  • [49] Interfaces, n.3, v.11, p.4221-4227, 2011.
  • [50] 14. GUO, Y.; B.; ZHANG, S.W. The Tribological Properties
  • [51] of Multi-Layered Graphene as Additives of PAO2 Oil in
  • [52] Steel–Steel Contacts. Lubricants, n.4, v.3, p.30-42. 2016.
  • [53] 15. RAPOPORT L., NEPOMNYASHCHY O., LAPSKER I.,
  • [54] VERDYAN A., MOSHKOVICH A., FELDMAN Y.,
  • [55] TENNE R.: Behavior of Fullerene-like WS2 Nanoparticles
  • [56] Under Severe Contact Conditions. Wear, v.259, p.703-707,
  • [57] 2005.
  • [58] 16. GULZAR, M. Tribological Study of nanoparticles
  • [59] enriched bio-based lubricants for engine piston ring-cylinder
  • [60] interaction. University Of Malaya, Kuala Lumpur, 2016.
  • [61] 17. RAPOPORT, L.; FLEISCHER, N.; TENNE, R.
  • [62] Fullerene-like WS2 Nanoparticles: Superior Lubricants for
  • [63] Harsh Conditions. Adv.Mater, v.15, p.651−655, 2003.
  • [64] 18. SENATORE, A., D’AGOSTINO, V., PETRONE, V.,
  • [65] CIAMBELLI, P., SARNO, M.: Graphene Oxide Nanosheets
  • [66] as Effective Friction Modifier for Oil Lubrican t: Materials,
  • [67] Method sans Tribology Results. ISRN Tribology, 2013.
  • [68] 19. LEE H., LEE N., SEO Y., EOM J., LEE S. W.:
  • [69] Comparison of Frictional Forces on Graphene and Graphite.
  • [70] Nanotechnology, v.20, p.325701-325706, 2009."
Como citar:

AMARAL, Camila Novo da Rocha; VEIGA, Thiago Ferreira; MARQUES, Leandro Bordalo Schmidt; DUDA, Leonardo Ribeiro; "Nanolubrificantes aplicados na indústria automotiva", p. 140-148 . In: Anais do XXX Simpósio Internacional de Engenharia Automotiva . São Paulo: Blucher, 2023.
ISSN 2357-7592, DOI 10.5151/simea2023-PAP19

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações