Full Article - Open Access.

Idioma principal

NUMERICAL PREDICTIONS OF STEADY AND UNSTEADY FLOWS OF FENE-CR VISCOELASTIC FLUIDS WITH A NEWTONIAN SOLVENT

Paulo, G. S. ; Oishi, C. M. ; Tome, M. F. ;

Full Article:

In this work, we presente numerical results of the flows of FENE-CR viscoelastic fluids with a Newtonian solvent in a channel and in a cross-slot geometry. The governing equations for transient incompressible flows using the FENE-CR fluid are solved by the finite difference method on a staggered grid. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface will be employed. The full free surface stress conditions are considered. Indeed, an implicit treatment to solve the momentum equation is employed. Predictions for fully developed pipe flow are compared with the analytic solution to validate the numerical technique. Other problem perform in this work is the low Reynolds number viscoelastic flows in a cross-slot geometry. In particular, Rocha et. al.[12] carried out a systematic study in a planar cross-slot geometry using a FENE-CR fluid. In order to demonstrate that the numerical method developed in this work can capture the asymmetry predicted by Rocha et. al., we present results for flows of FENE-CR fluids in the planar cross-slot geometry. About all simulations presented in this work, our results are in quantitative or qualitative agreement with numerical predictions or analytical solutions.

Full Article:

Palavras-chave: FENE-CR fluid, cross-slot geometry, channel flow, free surface.,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-19367

Referências bibliográficas
  • [1] A. M. Afonso, M. A. Alves, and F. T. Pinho. Purely elastic instabilities in three- dimensional cross-slot geometries. Journal of Non-Newtonian Fluid Mechanics, 165:743–751, 2010.
  • [2] M. A. Alves, P. J. Oliveira, and F. T. Pinho. A convergent and universally bounded interpolation scheme for the treatment of advecion. International journal for numerical methods in fluids, 41:47–75, 2003.
  • [3] P. E. Arratia, C. C. Thomas, J. D. Diorio, and J. P. Gollub. Elastic instabilities of polymer solutions in extensional flows. Physical Reviw Asymemtries, 96(14):144502(4), 2006.
  • [4] G. K. Batchelor. An introduction of fluid dynamics. Cambridge University Press, Cam- bridge, 1967.
  • [5] M. Chilcott and J. Rallison. Creeping flow of dilute polymer solutions past cylinders and spheres. Journal of Non-Newtonian Fluid Mechanics, 29:381–432, 1988.
  • [6] A. Chorin. Numerical solution of the navier-stokes. Mathematics of Computation, 2:745–762, 1968.
  • [7] S. McKee, M. F. Tome, V. G. Ferreira, J. A. Cuminato, A. Castelo, F. S. Sousa, and N. Mangiavacchi. The mac method. Computers and Fluids, 37:907–930, 2008.
  • [8] C. M. Oishi, F. P. Martins, M. F. Tome, and M. A. Alves. Numerical simulation of drop impact and jet buckling problems using the extended pom?pom model. Journal of Non-Newtonian Fluid Mechanics, 169-170:91–103, 2012.
  • [9] C. M. Oishi, F. P. Martins, M. F. Tome, J. Cuminato, and S. MCKEE. Numerical solution of the extended pom-pom model for viscoelastic free surface flows. Journal of Non- Newtonian Fluid Mechanics, 166:165–179, 2011.
  • [10] M. S. N. Oliveira, F. T. Pinho, R. J. Poole, P. J. Oliveira, and M. A. Alves. Purely elastic flow asymmetries in flow-focusing devices. Journal of Non-Newtonian Fluid Mechanics, 160:31–39, 2009.
  • [11] R. J. Poole, M. A. Alves, and P. J. Oliveira. Purely elastic flow asymmetries. Physical Reviw Asymemtries, 99:164503, 2007.
  • [12] G. N. Rocha, R. J. Poole, M. A. Alves, and P. J. Oliveira. On extensibility effects in the cross-slot flow bifurcation. Journal of Non-Newtonian Fluid Mechanics, 156:58–69, 2009.
  • [13] R. Temam. Sur l’approximation de la solution des equations de navier-stokes par la methode de pas fractionnaires (ii). Archieves of Rational Mechanics and Analysis, 33:377–385, 1969.
  • [14] M. Tome, G. Paulo, F. Pinho, and M. Alves. Numerical solution of the ptt constitutive equation for unsteady three-dimensional free surface flows. Journal of Non-Newtonian Fluid Mechanics, 165:247–262, 2010.
  • [15] M. F. Tome, A. Castelo, J. A. Cuminato, N. Mangiavacchi, and S. McKee. Gensmac3d: A numerical method for solving unsteady three-dimensional free surface flows. Interna- tional Journal for Numerical Methods in Fluids, 37:747–796, 2001.
  • [16] M. F. Tome, B. Duffy, and S. McKee. A numerical technique for solving unsteady non- newtonian free surface flows. Journal of Non-Newtonian Fluid Mechanics, 62:9–34, 1996.
  • [17] M. F. Tome, N. Mangiavacchi, A. Castelo, J. A. Cuminato, and S. McKee. A finite difference techique for simulating unsteady viscoelastic free surface flows. Journal of Non-Newtonian Fluid Mechanics, 106:61–106, 2002.
  • [18] M. F. Tome and S. McKee. Gensmac: a computational marker-and-cell method for free surface flows in general domains. Journal of Computational Physics, 110:171–186, 1994.
Como citar:

Paulo, G. S.; Oishi, C. M.; Tome, M. F.; "NUMERICAL PREDICTIONS OF STEADY AND UNSTEADY FLOWS OF FENE-CR VISCOELASTIC FLUIDS WITH A NEWTONIAN SOLVENT", p. 3422-3438 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19367

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações