Artigo - Open Access.

Idioma principal

ON THE ROBUSTNESS OF THE FAT-TAILED DISTRIBUTION OF FIRM GROWTH RATES: A GLOBAL SENSITIVITY ANALYSIS

DOSI, G. ; PEREIRA, M. C. ; VIRGILLITO, M. E. ;

Artigo:

Firms grow and decline by relatively lumpy jumps which cannot be accounted by the cumulation of small, atom-less", independent shocks. Rather "big" episodes of expansion and contraction are relatively frequent. More technically, this is revealed by fat tail distributions of growth rates. This applies across di erent levels of sectoral disaggregation, across countries, over different historical periods for which there are available data. What determines such property? In Dosi et al., (2015) we implemented a simple multi-firm evolutionary simulation model, built upon the coupling of a replicator dynamic and an idiosyncratic learning process, which turns out to be able to robustly reproduce such a stylized fact. Here, we investigate, by means of a Kriging meta-model, how robust such "ubiquitousness" feature is with regard to a global exploration of the parameters space. The exercise con rms the high level of generality of the results in a statistically robust global sensitivity analysis framework.

Artigo:

Palavras-chave: Firm Growth Rates, Fat Tail Distributions, Kriging Meta-Modeling, Near-Orthogonal Latin Hypercubes, Variance-Based Sensitivity Analysis,

Palavras-chave: ,

DOI: 10.5151/engpro-1enei-058

Referências bibliográficas
  • [1] Bargigli, L., L. Riccetti, A. Russo, and M. Gallegati (2016). Network Calibration and Metamodeling of a Financial Accelerator Agent Based Model. Available at SSRN.
  • [2] Bottazzi, G., E. Cefis, and G. Dosi (2002). “Corporate growth and industrial structures: some evidence from the Italian manufacturing industry". Industrial and Corporate Change 11.4, 705–723.
  • [3] Bottazzi, G. and A. Secchi (2003). “A stochastic model of firm growth". Physica A: Statistical Mechanics and its Applications 324.1, 213–219.
  • [4] Bottazzi, G. and A. Secchi (2006). ”Explaining the distribution of firm growth rates". RAND Journal of Economic 37.2, 235–256. Bottazzi, Giulio (2014). SUBBOTOOLS. Scuola Superiore Sant'Anna. Pisa, Italy. url: http://cafim.sssup.it/~giulio/software/subbotools/.
  • [5] Cioppa, T. and T. Lucas (2007). “Eficient nearly orthogonal and space-filling Latin hypercubes". Technometrics 49.1, 45–5
  • [6] Dosi, G. (2007). “Statistical Regularities in the Evolution of industries. A guide trough some evidence and challenges for the theory". In: Perspectives on innovation. Malerba, F. and Brusoni, S. Editors (2007).
  • [7] Dosi, G., O. Marsili, L. Orsenigo, and R. Salvatore (1995). “Learning, market selection and the evolution of industrial structures". Small Business Economics 6,411–436.
  • [8] Dosi, G., R. Nelson, and S. Winter (2000). The nature and dynamics of organizational capabilities. Oxford University Press.
  • [9] Dosi, G., M.C. Pereira, and M.E. Virgillito (2015). The footprint of evolutionary processes of learning and selection upon the statistical properties of industrial dynamics. LEM Papers Series 2015/04. Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • [10] Dupuy, D., C. Helbert, and J. Franco (2015). “DiceDesign and DiceEval: Two R Packages for Design and Analysis of Computer Experiments". Journal of Statistical Software 65.11, 1–38. url: http://www.jstatsoft.org/v65/i11/.
  • [11] Hanusch, H. and A. Pyka (2007). Elgar Companion to Neo-Schumpeterian Economics. Edward Elgar.
  • [12] Helton, J., J. Johnson, C. Sallaberry, and C. Storlie (2006). “Survey of samplingbased methods for uncertainty and sensitivity analysis". Reliability Engineering & System Safety 91.10, 1175–1209.
  • [13] Ijiri, Y. and H. Simon (1977). Skew Distributions and the Sizes of Business Firms. Amsterdam: North-Holland.
  • [14] Iooss, B., L. Boussouf, V. Feuillard, and A. Marrel (2010). “Numerical studies of the metamodel fitting and validation processes". arXiv preprint arXiv:1001.1049.
  • [15] Jeong, S., M. Murayama, and K. Yamamoto (2005). “Eficient optimization design method using kriging model". Journal of Aircraft 42.2, 413–420.
  • [16] Kleijnen, J. and R. Sargent (2000). “A methodology for fitting and validating metamodels in simulation". European Journal of Operational Research 120.1, 14–29.
  • [17] Krige, D. (1951). “A statistical approach to some basic mine valuation problems on the Witwatersrand". Journal of the Chemical, Metallurgical and Mining Society of South Africa 52.6, 119–139.
  • [18] Malerba, F. and S. Brusoni (2007). Perspectives on innovation. Cambridge University Press.
  • [19] Matheron, G. (1963). “Principles of geostatistics". Economic geology 58.8, 1246–1266.
  • [20] McKay, M., R. Beckman, and W. Conover (2000). “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code". Technometrics 42.1, 55–61.
  • [21] Metcalfe, J. S. (1998). Evolutionary Economics and Creative Destruction. Routledge.
  • [22] Nelson, R. R. and S. G. Winter (1982). An Evolutionary Theory of Economic Change. Cambridge, MA: Belknap Press of Harvard University Press.
  • [23] R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. url: https://www.R-project.org/.
  • [24] Rasmussen, C. and C. Williams (2006). Gaussian processes for machine learning. Cambridge, MA: MIT Press.
  • [25] Roustant, O., D. Ginsbourger, and Y. Deville (2012). “DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization". Journal of Statistical Software 51.1, 1–55.
  • [26] Salle, I. and Y. Murat (2014). “Eficient Sampling and Meta-Modeling for Computational Economic Models". Computational Economics 44.4, 507–536.
  • [27] Saltelli, A. and P. Annoni (2010). “How to avoid a perfunctory sensitivity analysis". Environmental Modelling & Software 25.12, 1508–1517.
  • [28] Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola (2008). Global sensitivity analysis: the primer. New York: John Wiley & Sons.
  • [29] Saltelli, A., S. Tarantola, and F. Campolongo (2000). “Sensitivity analysis as an ingredient of modeling". Statistical Science 15.4, 377–395.
  • [30] Schumpeter, J. (1947). Capitalism, Socialism, and Democracy. New York and London: Harper & Brothers Publishers.
  • [31] Silverberg, G., G. Dosi, and L. Orsenigo (1988). “Innovation, Diversity and Difusion: A Self-organisation Model". Economic Journal 98.393, 1032–54.
  • [32] Valente, Marco (2014). LSD: Laboratory for Simulation Development. University of L'Aquila. L'Aquila, Italy. url: https://www.labsimdev.org/.
  • [33] Van Beers, W. and J. Kleijnen (2004). “Kriging interpolation in simulation: a survey". In: Simulation Conference, 2004. Proceedings of the 2004 Winter. Vol. 1. IEEE.
  • [34] Wang, G. and S. Shan (2007). “Review of metamodeling techniques in support of engineering design optimization". Journal of Mechanical design 129.4, 370–380.
Como citar:

DOSI, G.; PEREIRA, M. C.; VIRGILLITO, M. E.; "ON THE ROBUSTNESS OF THE FAT-TAILED DISTRIBUTION OF FIRM GROWTH RATES: A GLOBAL SENSITIVITY ANALYSIS", p. 1026-1049 . In: Anais do 1º Encontro da Nacional de Economia Industrial e Inovação [=Blucher Engineering Proceedings, v.3 n.4]. São Paulo: Blucher, 2016.
ISSN 2357-7592, DOI 10.5151/engpro-1enei-058

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações