Artigo completo - Open Access.

Idioma principal | Segundo idioma

Perspectiva multiníveis no setor elétrico brasileiro: recomendações para difusão da energia solar fotovoltaica

Multilevel perspective on the Brazilian electrical sector: recommendations for photovoltaic technology diffusion

Marcuzzo, Rafael ; Cario, Silvio Antonio Ferraz ; Maldonado, Mauricio Uriona ; Vaz, Caroline Rodrigues ;

Artigo completo:

A energia solar fotovoltaica apresenta potencial de mitigação da emissão de gases do efeito estufa no setor de eletricidade. A queda nos preços e o aumento na eficiência da tecnologia solar tem habilitado viabilidade comercial e sua participação nas matrizes elétricas, porém ainda apenas de maneira incipiente. Mas afinal, por que a fotovoltaica não cresce mais? Para investigar essa questão, o objetivo desse trabalho é analisar a dinâmica do regime de eletricidade e do nicho emergente da energia solar fotovoltaica à medida que competem e respondem às pressões do ambiente, sob ótica do framework Perspectiva Multiníveis. Como estudo de caso é utilizado o Brasil, em que algumas iniciativas políticas têm sido testadas para incentivar a difusão de sistemas fotovoltaicos, porém com pouco sucesso diante do potencial de irradiação solar que o País dispõe. Os resultados levantam debate para futuros trabalhos de análise da interdependência que a tecnologia mantém com os sistemas políticos, sociais e econômicos. O estudo conclui demonstrando principais contribuições e implicações políticas bem como sugerindo pesquisas futuras na área de energia em países em desenvolvimento.

Artigo completo:

Photovoltaic solar energy has the potential to mitigate the emission of greenhouse gases in the electricity sector. The drop in prices and the increase in the efficiency of solar technology has enabled commercial viability and its participation in the electric matrices, but still only in an incipient way. But after all, why doesn't photovoltaics grow anymore? To investigate this question, the objective of this work is to analyze the dynamics of the electricity regime and the emerging niche of photovoltaic solar energy as they compete and respond to environmental pressures, from the perspective of the Multilevel Perspective framework. As a case study, Brazil is used, in which some political initiatives have been tested to encourage the diffusion of photovoltaic systems, but with little success in view of the potential for solar irradiation that the country has. The results raise debate for future work to analyze the interdependence that technology maintains with political, social and economic systems. The study concludes by demonstrating key contributions and policy implications as well as suggesting future research in the field of energy in developing countries.

Palavras-chave: Transições para Sustentabilidade; Perspectiva Multiníveis; Energia Solar Fotovoltaica,

Palavras-chave: Sustainability Transitions; Multilevel Perspective; Solar Photovoltaic Energy,

DOI: 10.5151/v-enei-708

Referências bibliográficas
  • [1] ABSOLAR. (2019). Associação Brasileira de Energia Solar. http://absolar.org.br/infografico-absolar-.html. Acesso: jul.
  • [2] ANEEL. (2018). Agência Nacional de Energia Elétrica. Revisão das regras aplicáveis à micro e mini geração distribuída - Resolução Normativa no 482/201 Relatório de Análise de Impacto Regulatório nº 0004/2018-SRD/SCG/SMA/ANEEL.
  • [3] ANEEL. (2019). Agência Nacional de Energia Elétrica. Geração Distribuída - Sala de Imprensa. http://www.aneel.gov.br/sala-de-imprensa-exibicao/-/asset_publisher/XGPXSqdMFHrE/content/brasil-ultrapassa-marca-de-1gw-em-geracao-distribuida/656877
  • [4] ANEEL. (2019a). Agência Nacional de Energia Elétrica. Biblioteca virtual. http://biblioteca.aneel.gov.br/index.html.
  • [5] ANEEL. (2019b). Agência Nacional de Energia Elétrica. Retrospectiva Aneel 2019. https://www.aneel.gov.br/documents/656877/15495819/Retrospectiva+ANEEL+-+2019/73fd2b23-c540-8548-f7bd-554702f74133?version=1.0
  • [6] AQUILA, Giancarlo et al. An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience. Renewable and Sustainable Energy Reviews, v. 70, p. 1090-1098, 2017.
  • [7] BEN. (2019). Balanço Energético Nacional 2019: Ano base 2018 / Empresa de Pesquisa Energética. – Rio de Janeiro: EPE, 2019. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-377/topico-470/Relatório%20S%C3%ADntese%20BEN%202019%20Ano%20Base%202018.pdf.
  • [8] BOHNSACK, René; PINKSE, Jonatan; WAELPOEL, Anneloes. The institutional evolution process of the global solar industry: The role of public and private actors in creating institutional shifts. Environmental Innovation and Societal Transitions, v. 20, p. 16-32, 2016.
  • [9] BRADSHAW, Amanda; DE MARTINO JANNUZZI, Gilberto. Governing energy transitions and regional economic development: Evidence from three Brazilian states. Energy Policy, v. 126, p. 1-11, 201
  • [10] CARSTENS, Danielle Denes; DA CUNHA, Sieglinde Kindl. Challenges and opportunities for the growth of solar photovoltaic energy in Brazil. Energy policy, v. 125, p. 396-404, 2019.
  • [11] CARSTENS, Danielle Denes; DA CUNHA, Sieglinde Kindl. Solar energy growth in Brazil: essential dimensions for the technological transition. International Journal of Energy Economics and Policy, v. 8, n. 4, p. 293, 2018.
  • [12] CCEE. (2018). Câmara de Comércio de Energia Elétrica. Com que se relaciona. https://www.ccee.org.br/portal/ faces/pages_publico/onde-atuamos/com_quem_se_relaciona?_afrLoop= 262215774813310#!%40%40%3F_afrLoop.%3D262215774813310%26_adf.ctrl-stat %3D9g0aw5lmy_4.
  • [13] CONTRERAS LISPERGUER, Rubén et al. Distributed photovoltaic generation in Brazil: Technological innovation, scenario methodology and regulatory frameworks. 2019.
  • [14] CUNHA, Eldis Camargo Neves da. Os usos da água para geração de energia elétrica e a sustentabilidade jurídico-ambiental. 2008. Tese de Doutorado. Universidade de São Paulo.
  • [15] DI LUCIA, Lorenzo; ERICSSON, Karin. Low-carbon district heating in Sweden–Examining a successful energy transition. Energy Research & Social Science, v. 4, p. 10-20, 2014.
  • [16] DÓCI, Gabriella; VASILEIADOU, Eleftheria; PETERSEN, Arthur C. Exploring the transition potential of renewable energy communities. Futures, v. 66, p. 85-95, 2015.
  • [17] DE FARIA JR, Haroldo; TRIGOSO, Federico BM; CAVALCANTI, João AM. Review of distributed generation with photovoltaic grid connected systems in Brazil: Challenges and prospects. Renewable and Sustainable Energy Reviews, v. 75, p. 469-475, 20
  • [18] FARLA, J. C. M. et al. Sustainability transitions in the making: A closer look at actors, strategies and resources. Technological forecasting and social change, v. 79, n. 6, p. 991-998, 2012.
  • [19] GARLET, Taís Bisognin et al. Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil. Renewable and Sustainable Energy Reviews, v. 111, p. 157-169, 20
  • [20] GEELS, Frank W. Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Research policy, v. 31, n. 8-9, p. 1257-1274, 2002.
  • [21] GEELS, Frank W. From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Research policy, v. 33, n. 6-7, p. 897-920, 2004.
  • [22] GEELS, Frank W. The multi-level perspective on sustainability transitions: Responses to seven criticisms. Environmental innovation and societal transitions, v. 1, n. 1, p. 24-40, 2011.
  • [23] GEELS, Frank W.; SCHOT, Johan. Typology of sociotechnical transition pathways. Research policy, v. 36, n. 3, p. 399-417, 2007.
  • [24] GIELEN, Dolf; BOSHELL, Francisco; SAYGIN, Deger. Climate and energy challenges for materials science. Nature materials, v. 15, n. 2, p. 117-120, 2016.
  • [25] HODGKINSON, Gerard P. et al. The role of strategy workshops in strategy development processes: Formality, communication, co-ordination and inclusion. Long range planning, v. 39, n. 5, p. 479-496, 2006.
  • [26] HOLDERMANN, Claudius; KISSEL, Johannes; BEIGEL, Jürgen. Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors. Energy Policy, v. 67, p. 612-617, 2014.
  • [27] IRENA, IEA e REN21 (2018), ‘Renewable Energy Policies in a Time of Transition’. IRENA, OECD/ IEA and REN21. https://www.ren21.net/wp-content/uploads/2019/06/17-8622_Policy_FullReport_web_FINAL.pdf.
  • [28] JIMENEZ, Maritza; FRANCO, Carlos J.; DYNER, Isaac. Diffusion of renewable energy technologies: The need for policy in Colombia. Energy, v. 111, p. 818-829, 2016.
  • [29] JOHNSON, Francis X.; SILVEIRA, Semida. Pioneer countries in the transition to alternative transport fuels: comparison of ethanol programmes and policies in Brazil, Malawi and Sweden. Environmental Innovation and Societal Transitions, v. 11, p. 1-24, 2014.
  • [30] KÖHLER, Jonathan et al. An agenda for sustainability transitions research: State of the art and future directions. Environmental Innovation and Societal Transitions, v. 31, p. 1-32, 2019.
  • [31] KUBLI, Merla; ULLI-BEER, Silvia. Decentralisation dynamics in energy systems: A generic simulation of network effects. Energy Research & Social Science, v. 13, p. 71-83, 2016.
  • [32] LOORBACH, Derk; ROTMANS, Jan. The practice of transition management: Examples and lessons from four distinct cases. Futures, v. 42, n. 3, p. 237-246, 2010.
  • [33] MARKARD, Jochen; HOFFMANN, Volker H. Analysis of complementarities: Framework and examples from the energy transition. Technological forecasting and social change, v. 111, p. 63-75, 2016.
  • [34] MARKARD, Jochen; TRUFFER, Bernhard. Technological innovation systems and the multi-level perspective: Towards an integrated framework. Research policy, v. 37, n. 4, p. 596-615, 2008.
  • [35] NASCIMENTO, Lucas Rafael et al. Performance assessment of solar photovoltaic technologies under different climatic conditions in Brazil. Renewable Energy, v. 146, p. 1070-1082, 2020.
  • [36] NEGRO, Simona O.; ALKEMADE, Floortje; HEKKERT, Marko P. Why does renewable energy diffuse so slowly? A review of innovation system problems. Renewable and sustainable energy reviews, v. 16, n. 6, p. 3836-3846, 2012.
  • [37] NORTH, Douglass C. Institutions and economic theory. The american economist, v. 61, n. 1, p. 72-76, 2016.
  • [38] PAPACHRISTOS, Georg. A system dynamics model of socio-technical regime transitions. Environmental Innovation and Societal Transitions, v. 1, n. 2, p. 202-233, 2011.
  • [39] PARAG, Yael; SOVACOOL, Benjamin K. Electricity market design for the prosumer era. Nature energy, v. 1, n. 4, p. 1-6, 2016.
  • [40] REDDY, N. Mohan; ARAM, John D.; LYNN, Leonard H. The institutional domain of technology diffusion. Journal of Product Innovation Management: AN INTERNATIONAL PUBLICATION OF THE PRODUCT DEVELOPMENT & MANAGEMENT ASSOCIATION, v. 8, n. 4, p. 295-304, 1991.
  • [41] RIP, Arie et al. Technological change. Human choice and climate change, v. 2, n. 2, p. 327-399, 1998.
  • [42] ROSENBLOOM, Daniel; BERTON, Harris; MEADOWCROFT, James. Framing the sun: A discursive approach to understanding multi-dimensional interactions within socio-technical transitions through the case of solar electricity in Ontario, Canada. Research Policy, v. 45, n. 6, p. 1275-1290, 2016.
  • [43] ROTMANS, Jan; KEMP, René; VAN ASSELT, Marjolein. More evolution than revolution: transition management in public policy. foresight, 2001.
  • [44] RUBIO, Md Mar; FOLCHI, Mauricio. Will small energy consumers be faster in transition? Evidence from the early shift from coal to oil in Latin America. Energy Policy, v. 50, p. 50-61, 2012.
  • [45] SCHMIDT, Johannes; CANCELLA, Rafael; PEREIRA JR, Amaro O. The role of wind power and solar PV in reducing risks in the Brazilian hydro-thermal power system. Energy, v. 115, p. 1748-1757, 2016.
  • [46] SMITH, Adrian; STIRLING, Andy; BERKHOUT, Frans. The governance of sustainable socio-technical transitions. Research policy, v. 34, n. 10, p. 1491-1510, 2005.
  • [47] SMITH, Adrian; VOß, Jan-Peter; GRIN, John. Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Research policy, v. 39, n. 4, p. 435-448, 2010.
  • [48] SOLOMON, Barry D.; KRISHNA, Karthik. The coming sustainable energy transition: History, strategies, and outlook. Energy Policy, v. 39, n. 11, p. 7422-7431, 2011.
  • [49] SOVACOOL, Benjamin K. How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Research & Social Science, v. 13, p. 202-215, 2016.
  • [50] STRUNZ, Sebastian. The German energy transition as a regime shift. Ecological Economics, v. 100, p. 150-158, 2014.
  • [51] URIONA-MALDONADO, Mauricio; RODRIGUES VAZ, Caroline. The evolution of sustainability transitions and technological innovation systems research: a bibliometric analysis. In: 15th Globelics International Conference, Athens, Greece. 2015.
  • [52] URIONA, Mauricio; GROBBELAAR, Sara S. Innovation system policy analysis through system dynamics modelling: A systematic review. Science and Public Policy, v. 46, n. 1, p. 28-44, 2019.
  • [53] WILKINSON, Sam; DAVIDSON, Michael; MORRISON, Gregory M. Historical transitions of Western Australia’s electricity system, 1880-2016. Environmental Innovation and Societal Transitions, v. 34, p. 151-164, 2020.
Como citar:

Marcuzzo, Rafael; Cario, Silvio Antonio Ferraz; Maldonado, Mauricio Uriona; Vaz, Caroline Rodrigues; "Perspectiva multiníveis no setor elétrico brasileiro: recomendações para difusão da energia solar fotovoltaica", p. 1348-1361 . In: Anais do V Encontro Nacional de Economia Industrial e Inovação (ENEI): “Inovação, Sustentabilidade e Pandemia”. São Paulo: Blucher, 2021.
ISSN 2357-7592, DOI 10.5151/v-enei-708

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações