Artigo - Open Access.

Idioma principal | Segundo idioma

Pesquisa e desenvolvimento de Tecnologia Assistiva: uma revisão sistemática sobre andadores

Research and development of Assistive Technology: a systematic review on walkers

SILVA, Júlio C. Augusto da ; COSTA, Diego dos Santos ;

Artigo:

Andadores são dispositivos auxiliares da marcha, empregados por pessoas com limitações motoras moderadas. São equipamentos prioritários em um mundo de populações cada vez mais longevas, onde aumentam as incidências de deficiências. Entre seus usuários, destaca-se um grupo ainda capaz de realizar a marcha independente com assistência dos dispositivos, mas incapaz de realizar transferências entre as posturas sentada e em pé. Para atender a demandas deste grupo, pesquisas vêm sendo conduzidas para desenvolvimento de andadores que auxiliem também transferência de postura. Este estudo tem como objetivo elaborar um panorama destas pesquisas, para orientar novos desenvolvimentos. Para tanto, foi utilizada revisão sistemática de literatura, que identificou 45 publicações onde foi observado o desenvolvimento de 21 projetos, dos quais 20 são de equipamentos com eletrônica embarcada e motorização, e apenas um de andador convencional, o que sugere uma carência de P&D de dispositivos de custo acessível.

Artigo:

Walkers are gait aids used by people with moderate motor limitations. They are priority equipment in a world of increasingly long-lived populations, where the incidence of disabilities is increasing. Among its users, there is a group still able to perform the independent gait with the assistance of the devices, but unable to perform transfers between sitting and standing postures. To meet the demands of this group, research has been conducted for the development of walkers that also help to transfer posture. This study aims to provide an overview of these researches to guide further developments. For this purpose, a systematic literature review was used, which identified 45 publications where the development of 21 projects was observed, of which 20 are for equipment with embedded electronics and motorization, and only one for a conventional walker, which suggests a lack of R&D of affordable devices.

Palavras-chave: Andador; auxílio à Marcha; Auxílio à Transferência Postural.,

Palavras-chave: Walker; Gait Assistance; Postural Transition Assistance.,

DOI: 10.5151/ped2022-4921976

Referências bibliográficas
  • [1] ⦁ ABLEDATA, Hugn-Go. Models 100, 200 & 350. Abledata, 2018. disponível em , acesso em 25 de julho de 2020.
  • [2] ⦁ ALIMED, Eva Support Walkers. Alimed, 2018, disponível em , acesso em 25 de julho de 2020.
  • [3] ⦁ ALVES, J; SEABRA, E; CAETANO, I. & SANTOS, C.P. Overview of the ASBGo++ Smart Walker. 2017 IEEE 5th Portuguese Meeting on Bioengineering, 2017.
  • [4] ⦁ ALVES, J. et al. Considerations and mechanical modifications on a Smart Walker. 2016 International Conference on Autonomous Robot Systems and Competitions, pp 247-252, 2016.
  • [5] ⦁ ANDRADE, V.S. & PEREIRA, S.M.P. Influência da tecnologia assistiva no desempenho funcional e na qualidade de vida de idosos comunitários frágeis: uma revisão bibliográfica. Revista Brasileira de Geriatria e Gerontologia, 12:3, pp 113-122, 2009.
  • [6] ⦁ BATENI, H. & MAKI, B.E. Assistive Devices for Balance and Mobility: Benefits, Demands and Adverse Consequences. Arch Phys Med Rehabil, 86, pp 134-145, 2005.
  • [7] ⦁ BRASIL, Subsecretaria Nacional De Promoção dos Direitos da Pessoa com Deficiência. Comitê De Ajudas Técnicas. Tecnologia Assistiva. Brasília: CORDE, 2009.
  • [8] ⦁ BRASIL, Secretaria Nacional De Promoção dos Direitos da Pessoa com Deficiência. Cartilha do Censo 2010: Pessoas com Deficiência. Brasília: SDH/SNPD, 2012.
  • [9] ⦁ BULEA, T. & TRIOLO, R. Design and experimental evaluation of a vertical lift walker for sit-to-stand transition assistance. Journal of Medical Devices. 6:1, 2012.
  • [10] ⦁ BURNS, T. et al. Design of a multi-function walker/cane for enhanced assistive function. ASME 2012 Summer Bioengineering Conference, pp 1321-1322, 2012.
  • [11] ⦁ CARDOSO, V.D. A Reabilitação de Pessoas com Deficiência através do Desporto Adaptado. Rev. Bras. Ciênc. Esporte, 33:2, pp 529-539, 20
  • [12] ⦁ CHALVATZAKI, G. et al. Towards an intelligent robotic walker for assisted living using multimodal sensorial data. 4th International Conference on Wireless Mobile Communication and Healthcare - Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), 2014.
  • [13] ⦁ CHANG, M.F.; MOU, W.H.; LIAO, C.K. & FU, L.C. Design and Implementation of an Active Robotic Walker for Parkinson’s Patients. SICE Annual Conference. pp 2068-2073, 2012.
  • [14] ⦁ CHUGO, D.; MURAMATSU, S.; KAWAZOE, S. & HASHIMOTO, H. A Standing assistance for both voluntary movement and posture adjustment. Advances in Cooperative Robotics, pp.18-25, 2017.
  • [15] ⦁ CHUGO, D.; MURAMATSU, S.; YOKOTA, S. & HASHIMOTO, H. Standing Assistance considering a Voluntary Movement and a Postural Adjustment. Advances in Cooperative Robotics, pp 18-25, 2016.
  • [16] ⦁ CHUGO, D.; SAKAIDA, Y.; YOKOTA, S. & TAKASE, K. Sitting Motion Assistance for a Rehabilitation Robotic Walker. Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, 98:1, pp 1967-1972, 2012.
  • [17] ⦁ CHUGO, D. et al. Seating Motion Analysis and Its Assistance on a Robotic Walker. IEEE international symposium on robot and human interactive communication (IEEE RO-MAN), pp 494-499, 2010.
  • [18] ⦁ CHUGO, D et al. A moving control of a robotic walker for standing, walking and seating assistance. IEEE International Conference On Robotics And Biomimetics, pp 692-697, 2009.
  • [19] ⦁ CHUGO, D. et al. A rehabilitation walker with standing and walking assistance. IEEE/RSJ International Conference on Intelligent Robots and System, pp 260-265, 2008a.
  • [20] ⦁ CHUGO, D;MASTUOKA, W.; JIA, S. & TAKASE, K. A robotic walker with standing assistance. Proceedings of the 2008 IEEE International Conference on Information and Automation, pp 452-457, 2008b.
  • [21] ⦁ CHUGO. D.; MASTUOKA. W.; JIA, S. & TAKASE, K. The Wheel Control of a Robotic Walker for Standing and Walking Assistance with Stability. Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive Communication, pp 297-302, 2008c.
  • [22] ⦁ CIFUENTES, C. et al. Wearable Robotic Walker for Gait Rehabilitation and Assistance in Patients with Cerebral Palsy. Converging Clinical and Engineering Research on Neurorehabilitation II. Biosystems & Biorobotics, 15, pp 1451-1455, Springer, 2017.
  • [23] ⦁ CIFUENTES, C. et al. Sensor Fusion to Control a Robotic Walker Based on Upper-Limbs Reaction Forces and Gait Kinematics. 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp 1098-1103, 2014.
  • [24] ⦁ DA SILVA JR, A.; SUP, F. A Robotic Walker Based on a Two-Wheeled Inverted Pendulum. Journal of intelligent & robotic systems, 86:1, pp 17-34, 2016.
  • [25] ⦁ DA SILVA JR, A.; SUP, F, Design and Control of a Two-Wheeled Robotic Walker for Balance Enhancement. IEEE 13th international conference on rehabilitation robotics (ICORR), 2013.
  • [26] ⦁ FARIA, V.; SILVA, J.; MARTINS, M. & SANTOS, C. Dynamical System Approach for Obstacle Avoidance in a Smart Walker Device. IEEE international conference on autonomous robot systems and competitions (ICARSC), pp 261-266, 2014.
  • [27] ⦁ FRIZERA NETO, A. et al. Extraction of user's navigation commands from upper body force interaction in walker assisted gait. Biomedical Engineering Online, 9:37, 2010.
  • [28] ⦁ GRAF, B. & SCHRAFT, R.D. Behavior-based path modification for shared control of robotic walking aids. IEEE 10th International Conference on Rehabilitation Robotics, pp 317-322, 2007.
  • [29] ⦁ HAN, K. et al., Usability testing of smart mobile walker: a pilot study Kiwan. The 11th International Conference on Ubiquitous Robots and Ambient Intelligence, 112-115, 2014.
  • [30] ⦁ HELPAGE INTERNATIONAL. Global AgeWatch Index 2015. Disponível em: , acesso em 29 de julho de 2020.
  • [31] ⦁ JIN, N.; KANG, J. & AGRAWAL, S.K. Design of a novel assist interface where toddlers walk with a mobile robot supported at the waist. Proceedings of the IEEE/RAS-EMBS international conference on rehabilitation robotics (ICORR), pp 577-582, 2015.
  • [32] ⦁ KAWAZOE, S. et al. Development of Standing Assistive Walker for Domestic Use. IEEE International Conference on Industrial Technology. Toronto, pp 1455-1460, 2017.
  • [33] ⦁ KIM, I. et al. Kinematic Analysis of Sit-To-Stand Assistive Device for the Elderly and Disabled. IEEE International Conference on Rehabilitation Robotics, 2011.
  • [34] ⦁ LEE, G.,; OHNUMA, T.; CHONG, N.Y. & LEE, S.G. Walking Intent-Based Movement Control for JAIST Active Robotic Walker. IEEE transactions on systems man cybernetics-systems, 44:5, pp 665-672, 2014.
  • [35] ⦁ LEE, J.; KIM, K.; KIM, J. & SONG, W.K. Essential Feedback on First Prototypes of Smart Mobile Walker and Upper Extremity Assistive Robot. 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), PP 65-66, 2012.
  • [36] ⦁ LEE, G. et al. JAIST Robotic Walker Control Based on a Two-layered Kalman Filter. IEEE international conference on robotics and automation, pp. 3682-3687, 2011.
  • [37] ⦁ LU, C.K. et al. Adaptive guidance system design for the assistive robotic walker. Neurocomputing, 170, pp 152-160, 2015.
  • [38] ⦁ MARTINS, M. et al. Design, implementation and testing of a new user interface for a smart walker. IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp 217-222, 2014.
  • [39] ⦁ MARTINS, M.; SANTOS, C.P.; FRIZERA NETO, A. & CERES, R. Assistive mobility devices focusing on Smart Walkers: Classification and review. Robotics and Autonomous Systems, 60:4, pp 548-562, 2011.
  • [40] ⦁ MEDICAL GRACE, Lift Walker With Retractable Stand Assist Bars. 2015, disponível em , acesso em 25 julho de 2020.
  • [41] ⦁ MODISE, T.D.; STEYN, N.; HAMAM, Y. Linear Progression Measurement and Analysis of Human Gait for the Development of a Multifunctional Robotic Walker. Pattern Recognition Association Of South Africa And Robotics And Mechatronics International Conference (PRASA-RobMech), 2016.
  • [42] ⦁ MOREIRA, P.R. Paraolimpíada, como tudo começou, Toque a Toque, 1988.
  • [43] ⦁ MORITA, Y. et al. Standing Motion Assistance on a Robotic Walker based on the Estimated Patient’s Load. 4th IEEE RAS & EMBS International Conference On Biomedical Robotics And Biomechatronics (BIOROB), pp 1721-1726, 2012.
  • [44] ⦁ MOU, R. et al. Context-Aware assisted interactive robotic walker for parkinson's disease patients. IEEE/RSJ International Conference On Intelligent Robots And Systems (IROS), pp 329-334, 2012.
  • [45] ⦁ MUN, K.R.; ZHAO, G. & YU, H. Development and evaluation of a novel over-ground robotic walker for pelvic motion support. Proceedings of the IEEE/RAS-EMBS International Conference on Rehabilitation Robotics (ICORR 2015), pp 95-100, 2015.
  • [46] ⦁ OHNUMA, T.; LEE, G; & CHONG, N.Y. Development of JARoW-II active robotic walker reflecting pelvic movements while walking. Intelligent Service Robotics, 10:2, PP 95-107, 2017.
  • [47] ⦁ OHNUMA, T.; LEE, G.; CHONG, N.Y. Particle Filter Based Lower Limb Prediction and Motion Control for JAIST Active Robotic Walker. 23rd IEEE international symposium on robot and human interactive communication (IEEE RO-MAN), pp 6-11 2014.
  • [48] ⦁ PAULO, J. et al. An Innovative Robotic Walker For Mobility Assistance and Lower Limbs Rehabilitation. IEEE 5th portuguese meeting on bioengineering (ENBENG), 2017a.
  • [49] ⦁ PAULO, J.; ASVADI, A.; PEIXOTO, P.; AMORIM, P. Human gait pattern changes detection system: A multimodal vision-based and novelty detection learning approach. Biocybernetics and Biomedical Engineering, 37, pp 701-717, 2017b.
  • [50] ⦁ PAULO, J.; PEIXOTO, P.; NUNES, U.J. ISR-AIWALKER: Robotic Walker for Intuitive and Safe Mobility Assistance and Gait Analysis. IEEE Transactions on Human-Machine Systems, 47:6, pp 1110-1122, 2017c.
  • [51] ⦁ PROENÇA JÚNIOR, D.; SILVA, D. R. O caminho das pedras no oceano de bibliografia. Transinformação, v. 28, n. 2, p. 2-2, 2016.
  • [52] ⦁ SHI, F.; CAO, Q.; LENG, C. & TAN, H. Based On Force Sensing-Controlled Human-Machine Interaction System For Walking Assistant Robot. 8th World Congress on Intelligent Control and Automation, pp 6528-6533, 2010.
  • [53] ⦁ SHIN, J.; ITTEN, D.; RUSAKOV, A.; & MEYER, B. SmartWalker: Towards an Intelligent Robotic Walker for the Elderly. International Conference on Intelligent Environments, pp 9-16, 2015.
  • [54] ⦁ UNITED NATIONS - DEPARTMENT OF ECONOMIC AND SOCIAL AFFAIRS, POPULATION DIVISION. World Population Prospects: The 2017 revision, key findings and advance tables, 2017.
  • [55] ⦁ U RISE PRODUCTS. Improve your mobility and independence, 2018, disponível em , acesso em 25 jul., 2020.
  • [56] ⦁ VAN HOOK, F.W.; DEMOSBREUN, D. & WEISS, B.D. Ambulatory Devices for Chronic Gait Disorders in the Elderly. American Family Physician, 67:8, pp 1717-1724, 2003.
  • [57] ⦁ WADA, M.; ICHIRYU, K.; IGUCHI, T. & YOSHIDA, R. Design and Control of an Active-caster Electric Walker with a Walk Sensing System (SMART WALKER). IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp 256-263, 2016.
  • [58] ⦁ WHO WORLD HEALTH ORGANIZATION. World Report on Ageing and Health, WHO Print, Geneva, 2015.
  • [59] ⦁ YAMADA, T.; CHUGO, D.; YOKOTA, S. & HASHIMOTO, H. A simple load estimation of a patient during a standing assistance motion. Nature-Inspired Mobile Robotics, pp 109-116, 2013.
  • [60] ⦁ YUK, E. et al. Smart walker development based on experts’ feedback for elderly and disabled. 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp 552-553, 2013.
  • [61] ⦁ YUK, E. et al. Posture balancing control of smart mobile walker for uneven terrain. 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp 63-64, 2012.
Como citar:

SILVA, Júlio C. Augusto da; COSTA, Diego dos Santos; "Pesquisa e desenvolvimento de Tecnologia Assistiva: uma revisão sistemática sobre andadores", p. 2612-2634 . In: Anais do 14º Congresso Brasileiro de Pesquisa e Desenvolvimento em Design. São Paulo: Blucher, 2022.
ISSN 2318-6968, DOI 10.5151/ped2022-4921976

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações