Completo - Open Access.

Idioma principal | Segundo idioma

Potencial da casca da laranja como biossorvente alternativo para remoção de metais pesados em águas residuais

Orange peel biosorbent potential as an alternative for removing heavy metals from wastewater

Souza, Wallas Douglas de Macêdo ; Alves, Janete Jane Fernandes ; Oliveira, Thiago Mielle Brito Ferreira ; Oliveira, Daniele da Silva ;

Completo:

A poluição dos recursos hídricos e os respectivos impactos socioambientais constituem motivo de preocupação mundial, em virtude da ascendente escassez deste recurso associada ao elevado custo energético e financeiro atrelado ao seu tratamento. Um dos poluentes mais preocupantes e frequentes são os metais pesados, por serem altamente tóxicos para a saúde dos seres vivos e capazes de inviabilizar a utilização da água para diferentes fins. Como alternativa, várias técnicas de tratamento têm sido propostas para a remoção de metais de águas naturais, com destaque para as tecnologias de adsorção por troca iônica. A utilização de biossorventes obtidos a partir da casca e do mesocarpo de diferentes frutos (laranja, limão, banana, fibra de coco verde, entre outros), tem mostrado resultados bastante promissores. O presente trabalho apresenta uma revisão acerca da viabilidade da casca da laranja no processo de biossorção, por conta do alto potencial da biomassa não comestível deste fruto para o processo de troca iônica. Em linhas gerais, estudos revelam que a casca da laranja pode ser utilizada em substituição ao carvão ativado comercial, que possui alto custo, mas que ainda é a técnica mais empregada para a remoção de metais em águas contaminadas. A modificação química da casca da laranja também tem mostrado excelentes resultados para a adsorção dos íons metálicos, porém estudos toxicológicos ainda necessitam ser realizados acerca dos riscos de contaminação com compostos secundários.

Completo:

The pollution of water resources and the environmental impacts are a global concern, due to the rising scarcity of this resource associated to the high energetic and financial costs associated to their treatment. One of the most worrying and frequent pollutants are heavy metals, because they are highly toxic for living beings and capable of make the water unusable for different purposes. Alternatively, several treatment techniques have been proposed for removal of natural waters metals, highlighting the adsorption technologies for ion exchange. The use of the biosorbents derived from mesocarp of the shell of different fruits (orange, lemon, banana, coconut fiber, among others), have shown very promising results. This paper presents a review of using orange peel viability in the biosorption process, due to the high potential of its fruit inedible biomass for the ion exchange process. In general, studies show that orange peel can be used to replace the activated charcoal trade, that has a high cost, but it is still the most used technique for the removal of metals from contaminated waters. The chemical modification of the orange peel has also shown excellent results for the adsorption of metal ions, however toxicological studies still need to be made about the contamination risks by secondary compounds.

Palavras-chave: Metais pesados; Troca iônica; Casca da laranja; Biossorção,

Palavras-chave: Heavy metals; Ion exchange; Orange peel; Biosorption,

DOI: 10.5151/chenpro-5erq-am2

Referências bibliográficas
  • [1] AJMAL, M. et al. Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni II from electroplating wastewater. Journal of Hazardous Materials, v. 79, n. 1-2, p 117-131, 2000.
  • [2] AKAR, S. T. et al. Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy, v. 97, n. 1-2, p. 98-104, 2009.
  • [3] ALMEIDA, J. da S. M de, et al. Redução do teor de prata e chumbo de águas contaminadas através do uso de material adsorvente. Revista Ciências do Ambiente On-Line, v. 8, n. 1, p. 1-6, 2012.
  • [4] ALOMÁ-VICENTE, I. de la. C. et al. Panorama general en torno a la contaminación del agua por níquel. La biosorción como tecnología de tratamento. Revista Cubana de Química, v. 25, n. 3, p. 266-280, 2013.
  • [5] ANASTOPOULOS, I.; KYZAS, G. Z. Progress in batch biosorption of heavy metals onto algae. Journal of Molecular Liquids, v. 209, n. 1, p. 77-86, 201
  • [6] BEDIAKO, J. K. et al. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber. Journal of Hazardous Materials, v. 299, n. 1, p. 550-561, 2015.
  • [7] BHATNAGAR, A.; SILLANPÄÄ, M.; WITEK-KROWIAK, A. Agricultural waste peels as versatile biomass for water purification - A review. Chemical Engineering Journal, v. 270, n. 1, p. 244-271, 2015.
  • [8] BILAL, M. et al. Waste biomass adsorbents for copper removal from industrial wastewater – A review. Journal of Hazardous Materials, v. 263, n. 1, p. 322-333, 2013.
  • [9] BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Projeções do Agronegócio: Brasil 2013/2014 a 2023/2024 projeções de longo prazo, Brasília, DF, set., 2014. 100p. Disponível em: . Acesso em: 15 set. 2015.
  • [10] BULUT, Y.; TEZ, Z. Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences, v. 19, n. 2, p. 160-166, 2007.
  • [11] CAPRARESCU, S. et al. Adsorbents/ion exchangers-PVA blend membranes: Preparation, characterization and performance for the removal of Zn2+ by electrodialysis. Applied Surface Science, v. 329, n. 1, p. 65-75, 2015.
  • [12] CHAND, P.; BAFANA, A.; PAKADE, Y. B. Xanthate modified apple pomace as an adsorbent for removal of Cd (II), Ni (II) and Pb (II), and its application to real industrial wastewater. International Biodeterioration & Biodegradation, v. 97, n. 1, 60-66, 2015.
  • [13] CHAO, H. P.; CHANG, C. C.; NIEVA, A. Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. Journal of Industrial and Engineering Chemistry, v. 20, n. 5, p. 3408-3414, 2014.
  • [14] DEMIRBAS, A. Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials, v. 157, n. 2-3, p. 220-229, 2008.
  • [15] FENG, N. et al. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials, v. 185, n. 1, p. 49-54, 2011.
  • [16] FU, F.; WANG, Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, v. 92, n. 3, 407-418, 2011.
  • [17] GONÇALVES JÚNIOR, A. C. Descontaminação e monitoramento de águas e solos na região amazônica utilizando materiais adsorventes alternativos, visando a remoção de metais pesados tóxicos e pesticidas. Inclusão Social, Brasília, v. 6, n. 2, p. 105-113, 2013.
  • [18] GHORBEL-ABID, I.; TRABELSI-AYADI, M. Competitive adsorption of heavy metals on local landfill clay. Arabian Journal of Chemistry, v. 8, n. 1, p. 25-31, 2015.
  • [19] HE, J.; CHARLET, L. A review of arsenic presence in China drinking water. Journal of Hydrology, v. 492, n. 1, p. 79-88, 2013.
  • [20] HEGAZI, H. A. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal, v. 9, n. 3, p. 276-282, 2013.
  • [21] HORSFALL JUNIOR, M.; OGBAN, F. E.; AKPORHONOR, E. E. Recovery of lead and cadmium ions from metal-loaded biomass of wild cocoyam (Caladium bicolor) using acidic, basic and neutral eluent solutions. Electronic Journal of Biotechnology, v. 9, n. 2, p. 152-156, 2006.
  • [22] HUSOON, Z. A.; AL-AZZAWI, M. N. A.; AL-HIYALY, S. A. K. Investigation biosorption potential of copper and lead from industrial wastewater using orange and lemon peels. Journal of Al-Nahrain University Science, v. 16, n. 2, p. 173-179, 2013.
  • [23] KEDZIOREK, M. A. M. et al. Natural attenuation of heavy metals (Cd, Cr, and Pb) in a water table aquifer underlying an industrial site. Procedia Earth and Planetary Science, v. 7, n. 1, p. 89-92, 2013.
  • [24] KUSHWAHA, S. et al. Spectroscopic characterization for remediation of copper, cadmium and mercury using modified palm shell powder. Journal of the Taiwan Institute of Chemical Engineers, v. 46, n. 1, p. 191-199, 2015.
  • [25] KYZAS, G. Z.; KOSTOGLOU, M. Green adsorbents for wastewaters: A critical review. Materials, v. 7, n. 1, p. 333-364, 2014.
  • [26] LAKHERWAL, D. Adsorption of heavy metals: A review. International Journal of Environmental Research and Development. v. 4, n. 1, p. 41-48, 2014.
  • [27] LAKSHMIPATHY, R.; SARADA, N. C. Application of watermelon rind as sorbent for removal of nickel and cobalt from aqueous solution. International Journal of Mineral Processing, v. 122, n. 1, p. 63-65, 2013.
  • [28] LASHEEN, M. R.; AMMAR, N. S.; IBRAHIM, H. S. Adsorption/desorption of Cd(II), Cu(II) and Pb(II). Solid State Sciences, v. 14, n. 2, p. 202-210, 2012.
  • [29] LI, X. et al. Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution. Separation and Purification Technology, v. 55, n. 1, p.69-75, 2007.
  • [30] LI, X. et al. Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 317, n. 1-3, p. 512-521, 2008.
  • [31] LU, D. et al. Kinetics and equilibrium of Cu(II) adsorption onto chemically modified orange peel cellulose biosorbents. Hydrometallurgy, v. 95, n. 1-2, p. 145-152, 2009.
  • [32] LUGO-LUGO, V. et al. A comparative study of natural, formaldehyde-treated and copolymer grafted orange peel for Pb(II) adsorption under batch and continuous mode. Journal of Hazardous Materials, v. 161, n. 2-3, p. 1255-1264, 2009.
  • [33] MAPA- Ministério da Agricultura, Pecuária e Abastecimento. Citrus. Disponível em: . Acesso em: 15 set. 2015.
  • [34] MOREIRA, F. R.; MOREIRA, J. C. Os efeitos do chumbo sobre o organismo humano e seu significado para a saúde. Rev Panam Salud Publica, v. 15, n. 2, p. 119-129, 2004.
  • [35] NGUYEN, T. A. H. et al. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresource Technology, v. 148, n. 1, p. 574-585, 2013.
  • [36] PAGNANELLI, F. et al. Heavy metal removal by olive pomace: biosorbent characterisation and equilibrium modelling. Chemical Engineering Science, v. 58, n. 20, p. 4709- 4717, 2003.
  • [37] PIETROBELLI, J. M. T. de A. Avaliação do potencial de biossorção dos íons Cd (II), Cu (II) e Zn (II) pela macrófita Egeria Densa. 2007. 98f. Dissertação (Mestrado em Engenharia Química) - Universidade Estadual do Oeste do Paraná, Toledo, 2007.
  • [38] PINO, G. H. TOREM, M. L. Aspectos fundamentais da biossorção de metais não ferrosos - Estudo de caso. Tecnologia em Metalurgia, Materiais e Mineração., v. 8, n. 1, p. 57-63, 2011.
  • [39] PUJOL, D. et al. Modelling synergistic sorption of Cr(VI), Cu(II) and Ni(II) onto exhausted coffee wastes from binary mixtures Cr(VI)–Cu(II) and Cr(VI)–Ni(II). Chemical Engineering Journal, v. 230, n. 1, p. 396-405, 2013.
  • [40] RAJA RAO, P.; BHARGAVI, C. H. Studies on biosorption of heavy metals using pretreated biomass of fungal species. International Journal of Chemistry and Chemical Engineering, v. 3, n. 3, p. 171-180, 2013.
  • [41] RANGEL-MENDEZ, J. R.; STREAT, M. Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH. Water Research, v. 36, n. 5, p. 1244-1252, 2002.
  • [42] RAZAK, N. H. A. et al. Drinking water studies: A review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia). Journal of Epidemiology and Global Health, 2015, http://dx.doi.org/10.1016/j.jegh.2015.04.003.
  • [43] REDDY, D. H. K.; LEE, S. M. Water pollution and treatment technologies. Environmental & Analytical Toxicology, v. 2, n. 5, p. 1-2, 2012.
  • [44] SAKA, C.; SAHIN, O.; KÜÇÜK, M. M. Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. International Journal of Environmental Science and Technology, v. 9, n. 2, p. 379-394, 2012.
  • [45] SAMAN, N. et al. Adsorptive efficacy analysis of lignocellulosic waste carbonaceous adsorbents toward different mercury species. Process Safety and Environmental Protection, v. 96, n. 1, p. 33-42, 2015.
  • [46] SEN, A. et al. Heavy metals removal in aqueous environments using bark as a biosorbent. International Journal of Environmental Science and Technology, v. 12, n. 1, p. 391-404, 2015.
  • [47] SILVA, J. L. B. C. da, et al. Biossorção de metais pesados: Uma revisão. Revista Saúde e Ciência On line, v. 3, n. 3, p. 137-149, 2014.
  • [48] SILVA, K. M. D. da, et al. Caracterização físico-química da fibra de coco verde para a adsorção de metais pesados em efluente de indústria de tintas. Engevista, v. 15, n. 1. p. 43-50, 2013.
  • [49] SIMATE, G. S.; NDLOVU, S. The removal of heavy metals in a packed bed column using immobilized cassava peel waste biomass. Journal of Industrial and Engineering Chemistry, v. 21, n. 1, p. 635-643, 2015. .
  • [50] SINGHA, A. S.; GULERIA, A. Utility of chemically modified agricultural waste okra biomass for removal of toxic heavy metal ions from aqueous solution. Engineering in Agriculture, Environment and Food, v. 8, n. 1, p. 52-60, 2015.
  • [51] SONG, S. T. et al. Removal of Hg(II) from aqueous solution by adsorption using raw and chemically modified rice straw as novel adsorbents. Industrial & Engineering Chemistry Research, v. 52, n. 36, p. 13092-13101, 2013.
  • [52] SOUZA, J. V. T. M. de, et al. Adsorção de cromo (III) por resíduos de laranja in natura e quimicamente modificados. Semina: Ciências Exatas e Tecnológicas, v. 33, n. 1, p. 03-16, 2012.
  • [53] VAUGHAN, T.; SEO, C. W.; MARSHALL, W. E. Removal of selected metal ions from aqueous solution using modified corncobs. Bioresource Technology, v. 78, n. 2, p. 133-139, 2001.
  • [54] VOLESKY, B. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, v. 59, n. 2-3, 203-216, 2001.
  • [55] WAN NGAH, W. S.; HANAFIAH, M. A. K. M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, v. 99, n. 10, p. 3935-3948, 2008.
  • [56] WU, M. D. J. et al. Effect of low-level prenatal mercury exposure on neonate neurobehavioral development in China. Pediatric Neurology, v. 51, n. 1, p. 93-99, 2014.
  • [57] XUAN, Z. et al. Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel. Biochemical Engineering Journal, v. 31, n. 2, p. 160-164, 2006.
  • [58] ZULIAN, A.; DÖRR, A. C.; ALMEIDA, S. C. Citricultura e agronegócio cooperativo no Brasil. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 11, n. 11, p. 2290-2306, 2013.
Como citar:

Souza, Wallas Douglas de Macêdo; Alves, Janete Jane Fernandes; Oliveira, Thiago Mielle Brito Ferreira; Oliveira, Daniele da Silva; "Potencial da casca da laranja como biossorvente alternativo para remoção de metais pesados em águas residuais", p. 619-629 . In: Anais do V Encontro Regional de Química & IV Encontro Nacional de Química [=Blucher Chemistry Proceedings].. São Paulo: Blucher, 2015.
ISSN 2318-4043, DOI 10.5151/chenpro-5erq-am2

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações