Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Projeto de arquitetura HIL para sistema de controle de válvula borboleta

HIL Architecture Design for Throttle Valve Control System

AGUILAR, R. F. S ; MURILO, A. ; LISBOA, F. C. ; TEIXEIRA, E. L. S. ; OLIVEIRA, T. C. ; ROVAI, F. F. ; UEHARA, S. ;

Trabalho completo:

Para reduzir os custos operacionais e de prototipagem, as indústrias e as equipes de pesquisa têm se concentrado mais em ambientes de simulação em tempo real. Estas plataformas permitem validar o desempenho e a eficiência dos sistemas em ambientes controlados que se assemelham muito à realidade, especialmente na indústria automóvel. Isto, por sua vez, permite-lhes antecipar potenciais falhas quando os sistemas são levados ao seu limite. Este trabalho tem como objetivo projetar e implementar uma plataforma de simulação Hardware-In-the-Loop (HIL) para modelagem e controle de uma válvula borboleta. A plataforma é customizada para otimizar ou propor novas estratégias de controle para a indústria automotiva. O modelo da válvula é validado através de métodos de identificação do sistema utilizando metodologia de caixa preta a ser implementada no software LabCar. Além disso, uma simulação em tempo real de um modelo de acelerador eletrônico é controlada pelo FlexECU com controle PI

Trabalho completo:

In order to lower operational and prototyping costs, industries and research teams have been focused more on real-time simulation environments. These platforms enable them to validate the performance and efficiency of systems within controlled environments that closely resemble reality, especially in the automotive industry. This, in turn, allows them to anticipate potential failures when systems are pushed to their limits. This work aims to design and implement a Hardware-In-the-Loop (HIL) simulation platform for modeling and control of a throttle valve. The platform is customized to optimize or propose new control strategies for the automotive industry. The valve

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2024-PAP94

Referências bibliográficas
  • [1] " A. B. C. De Farias, R. S. Rodrigues, A. Murilo, R. V. Lopes, and S. Avila, “Low-cost hardware-in-the-loop platform for embedded control strategies simulation,” IEEE Access, vol. 7, pp. 111499–111512, 2019.
  • [2] Y. Zeng, Z. Zhao, J. Zheng, D. Tan, W. Liu, B. Shi, and H. Li, “Extended Discrete-State Event-Driven Hardware-in-the-Loop Simulation for Power Electronic Systems Based on Virtual-Time-Ratio Regulation,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 3, pp. 2428–2440, 2023.
  • [3] Y. Shao, M. A. Mohd Zulkefli, Z. Sun, and P. Huang, “Evaluating connected and autonomous vehicles using a hardware-in-the-loop testbed and a living lab,” Transportation Research Part C: Emerging Technologies, vol. 102, no. September 2018, pp. 121–135, 2019.
  • [4] F. Ebe, B. Idlbi, D. E. Stakic, S. Chen, C. Kondzialka, M. Casel, G. Heilscher, C. Seitl, R. Bründlinger, and T. I. Strasser, “Comparison of power hardware-in-the-loop approaches for the testing of smart grid controls,” Energies, vol. 11, no. 12, 2018.
  • [5] J. Zheng, Z. Zhao, Y. Zeng, B. Shi, and Z. Yu, “An Event-Driven Real-Time Simulation for Power Electronics Systems Based on Discrete Hybrid Time-Step Algorithm,” IEEE Transactions on Industrial Electronics, vol. 70, no. 5, pp. 4809–4819, 2023.
  • [6] J. Li, W. Gao, and H. Liang, “Researches on the method of the hardware in loop simulation for vehicle stability control system based on scilab/scicos,” pp. 820–823, 2009.
  • [7] T. Hwang, J. Roh, K. Park, J. Hwang, K. H. Lee, K. Lee, S.-j. Lee, and Y.-j. Kim, “Development of hils systems for active brake control systems,” pp. 4404–4408, 2006.
  • [8] I. Sainz, B. Arteta, A. Coupeau, and P. Prieto, “X-in-the-loop simulation environment for electric vehicles ecus,” pp. 1–6, 2021.
  • [9] M. Abboush, D. Bamal, C. Knieke, and A. Rausch, “Hardware-in-the-loop-based real-time fault injection framework for dynamic behavior analysis of automotive software systems,” Sensors, vol. 22, no. 4, 2022.
  • [10] L. G. G. Soeiro and B. J. C. Filho, “Vehicle power system modeling and integration in hardware-in-the-loop (hil) simulations,” Machines, vol. 11, no. 6, 2023.
  • [11] A. R. Mayyas, S. Kumar, P. Pisu, J. Rios, and P. Jethani, “Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (vhil) approach,” Applied Energy, vol. 204, pp. 287–302, 2017.
  • [12] D. Liao-McPherson, M. Huang, S. Kim, M. Shimada, K. Butts, and I. Kolmanovsky, “Model predictive emissions control of a diesel engine airpath: Design and experimental evaluation,” International Journal of Robust and Nonlinear Control, vol. 30, no. 17, pp. 7446–7477, 2020.
  • [13] M. Ye and H. Wang, “A robust adaptive chattering-free sliding mode control strategy for automotive electronic throttle system via genetic algorithm,” IEEE Access, vol. 8, pp. 68–80, 2020.
  • [14] B. Rui, Y. Yang, and W. Wei, “Nonlinear backstepping tracking control for a vehicular electronic throttle with input saturation and external disturbance,” IEEE Access, vol. 6, pp. 10878–10885, 2018.
  • [15] R. Grepl and B. Lee, “Modeling, parameter estimation and nonlinear control of automotive electronic throttle using a rapid-control prototyping technique,” International Journal of Automotive Technology, vol. 11, pp. 601–610, 2010.
  • [16] X. Jiao, J. Zhang, and T. Shen, “An adaptive servo control strategy for automotive electronic throttle and experimental validation,” IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 6275–6284, 2014.
  • [17] R. N. Loh, W. Thanom, J. S. Pyko, A. Lee, et al., “Electronic throttle control system: modeling, identification and model-based control designs,” Engineering, vol. 5, no. 07, p. 587, 2013.
  • [18] E. Teuscher, B. Alt, F. Svaricek, J. P. Blath, M. Schultalbers, and B. B. Alt, “Linear and Nonlinear Modeling for an Electronic Throttle Body,” vol. 2007, pp. 9–13, 2007.
  • [19] A. G. Ulsoy, M. Çakmakci, and H. Peng, Automotive Control Systems. Cambridge university press, 2012.
  • [20] A. Smolarczyk, S. Łapczy ́nski, M. Szulborski, Ł. Kolimas, and Ł. Kozarek, “The real-time simulator using MATLAB/Simulink software for closed-loop coordination protection devices testing,” Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 69, no. 4, pp. 1–10, 2021.
  • [21] S. A. Billings, Nonlinear System Identification., vol. 4. 1986."
Como citar:

AGUILAR, R. F. S; MURILO, A.; LISBOA, F. C.; TEIXEIRA, E. L. S.; OLIVEIRA, T. C.; ROVAI, F. F.; UEHARA, S.; "Projeto de arquitetura HIL para sistema de controle de válvula borboleta", p. 504-511 . In: Anais do XXXI Simpósio Internacional de Engenharia Automotiva . São Paulo: Blucher, 2024.
ISSN 2357-7592, DOI 10.5151/simea2024-PAP94

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações