Article - Open Access.

Idioma principal | Segundo idioma

PRÁTICAS DE ECONOMIA CIRCULAR NO DESENVOLVIMENTO DE PRODUTOS AERONÁUTICOS: AÇÕES PROPOSTAS PELO MODELO RESOLVE

-

Dias, Veruska Mazza Rodrigues ; Jugend, Daniel ; Razzino, Carlos ; , ;

Article:

A preocupação com a adoção da sustentabilidade ambiental vem atraindo cada vez mais a atenção de praticantes e pesquisadores. Nos últimos anos a abordagem da economia circular tem se destacado como uma das principais tendências em sustentabilidade ambiental. Esta pesquisa, por meio de revisão teórica sistemática, visa propor framework integrando características de economia circular, definidas pelas ações propostas no modelo ReSOLVE às atividades de desenvolvimento de novos produtos e, especialmente, considerando as características dos produtos aeronáuticos. Como resultados, espera-se que o framework proposto inicie discussões sobre a integração da economia circular no desenvolvimento de novos produtos, considerando, especialmente, as características de produtos aeronáuticos.

Article:

-

Palavras-chave: economia circular; modelo ReSOLVE; desenvolvimento de produtos ambientalmente sustentáveis; desenvolvimento de produtos aeronáuticos,

Palavras-chave: -,

DOI: 10.5151/cbgdp2019-31

Referências bibliográficas
  • [1] ABSON, D.J. et al. Leverage points for sustainability transformation. Ambio, v.46, p.1–10, 2017.
  • [2] AHI, P., SEARCY, C. An analysis of metrics used to measure performance in green and sustainable supply chains. Journal of Cleaner Production, v.86, p.360-377, 2015.
  • [3] ALLWOOD, J.M., ASHBY, M.F., GUTOWSKI, T.G., WORRELL, E. Material efficiency: a white paper. Resources, Conservation and Recycling, v.55, p.362-381, 2011.
  • [4] ASMATULU, E., OVERCASH, M., TWOMEY, J.M. Evaluation of recycling efforts of aircraft companies in Wichita. Resources, Conservation and Recycling, v.80, p.36– 45, 2013.
  • [5] AYGUN, H., TURAN, O. Entropy, Energy and Exergy for Measuring PW4000 Turbofan Sustainability. International Journal of Turbo and Jet Engines, 2019.
  • [6] BAI, C., SARKIS, J. Green supplier development: analytical evaluation using rough set theory. Journal of Cleaner Production, v.18, p.1200-1210, 2010.
  • [7] BALLI O., SOHRET Y., KARAKOC H.T. The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. International Journal of Hydrogen Energy, v.43, p.10848-10858, 2018.
  • [8] BAXTER G., SRISAENG P., WILD G. An assessment of airport sustainability, part 1-waste management at Copenhagen Airport. Resources, v.7, 201
  • [9] BESSA L.C.B.A. et al. (Solid + liquid) equilibrium of binary mixtures containing ethyl esters and p-xylene by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 201
  • [10] BESSETTE A.P. et al. Life Cycle Impacts and Techno-economic Implications of Flash Hydrolysis in Algae Processing. ACS Sustainable Chemistry and Engineering, v.6, p.3580-3588, 2018.
  • [11] BOUKHERROUB T. et al. An integrated approach for sustainable supply chain planning. Computers & Operations Research, v.54, 2014.
  • [12] BWAPWA J.K., ANANDRAJ A., TROIS C. Microalgae processing for jet fuel production. Biofuels, Bioproducts and Biorefining, v.12, p.522-535, 2018.
  • [13] CAVALETT O., CHERUBINI F. Contribution of jet fuel from forest residues to multiple Sustainable Development Goals. Nature Sustainability, v.1, p.799-807, 2018.
  • [14] CETINKAYA B. et al. Sustainable supply chain management: Practical ideas for moving towards best practice. European Logistics Association, 2011.
  • [15] CHEN L., REN J. Multi-attribute sustainability evaluation of alternative aviation fuels based on fuzzy ANP and fuzzy grey relational analysis. Journal of Air Transport Management, v.68, p.176-186, 2018.
  • [16] COWPER-SMITH A., DE GROSBOIS, D. The adoption of corporate social responsibility practices in the airline industry. Journal of Sustainable Tourism, v.19, p.59-77, 2011.
  • [17] DARNALL, N.; JOLLEY, G. J.; HANDFIELD, R. Environmental management systems and green supply chain management: complements for sustainability? Business Strategy and the Environment, v.17, p.30–45, 2008.
  • [18] DINIZ A.P.M.M., SARGEANT R., MILLAR G.J. Stochastic techno-economic analysis of the production of aviation biofuel from oilseeds. Biotechnology for Biofuels, v.11, 20
  • [19] DODD T., ORLITZKY M., NELSON T. What stalls a renewable energy industry? Industry outlook of the aviation biofuels industry in Australia, Germany, and the USA. Energy Policy, v.123, p.92–103, 2018.
  • [20] EROL, I., SENCER, S., SARI, R. A new fuzzy multi-criteria framework for measuring sustainability performance of a supply chain. Ecological Economics, v.70, p.1088–1100, 2011.
  • [21] EMF. Circular Economy Report - The Circular Economy - Towards a Circular Economy: Business Rationale for an Accelerated Transition, 2015. Ellenmacarthurfoundation.org [online] Disponível em: http://www.ellenmacarthurfoundation.org/publications/towards-a-circular-economy-business-rationale-for-an-accelerated-transition [Acesso em: 3 Mar. 2019].
  • [22] EMF. The Circular Economy Concept - Regenerative Economy, 2017. Ellenmacarthurfoundation.org [online] Disponível em: https://www.ellenmacarthurfoundation.org/circular-economy/overview/concept [Acesso em: 2 Mar. 2019].
  • [23] GIALOS, A.A. et al. Investigating the impact of sustainability in the production of aeronautical subscale components. Journal of Cleaner Production, v.176, p.785–799, 2018.
  • [24] GOPALAKRISH-NAN, K. et al. Sustainable supply chain management; A case study of Brirish Aerospace (BAE) Systems. International Journal Of Production Economics, 2012.
  • [25] GOVINDAN, K., HASANAGIC, M. A systematic review on drivers, barriers, and practices towards circular economy: a supply chain perspective. International Journal of Production Research, v.56, p.278–311, 2018.
  • [26] GRI (2012-2013) Sustainability Reporting Guidelines. Sustainability Reporting Guidelines.
  • [27] HALLSTEDT, S.I. et al. Assessing sustainability and value of manufacturing processes: a case in the aerospace industry. Journal of Cleaner Production, v.108, p.169–182, 2015.
  • [28] HENKE M. et al. Challenges and opportunities of very light high-performance electric drives for aviation. Energies, v.11, 2018.
  • [29] HUANG, R. et al. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. Journal of Cleaner Production, v.35, p.1559–1570, 2016.
  • [30] IMMARIGEON, J.P. et al. Lightweight materials for aircraft applications. Materials Characterization, v.35, p. 41-67, 1995.
  • [31] JI, P., MA, X., LI, G. Developing green purchasing relationships for the manufacturing industry: An evolutionary game theory perspective. International Journal of Production Economics, v.166, p.155-162, 2015.
  • [32] KALMYKOVA Y. , SADAGOPAN M., ROSADO L. Circular economy – From review of theories and practices to development of implementation tools. Resources, Conservation & Recycling, v.135, p.190–201, 2018.
  • [33] KEIVANPOUR, S., AIT KADI, D., MASCLE, C. End of life aircraft’s recovery and green supply chain (a conceptual framework for addressing opportunities and challenges). Management Research Review, v.38, 2015.
  • [34] KIRCHOFF, J.F., KOCH, C., SATINOVER NICHOLS, B. Stakeholder perceptions of green marketing: the effect of demand and supply integration. International Journal of Physical Distribution & Logistics Management, v.41, p.684-696, 2011.
  • [35] KUHN H., FALTER C., SIZMANN A. Renewable Energy Perspectives for Aviation. CEAS – The International Conference of the European Aerospace Societies, 2011.
  • [36] LIEDER, M., RASHID, A. Towards Circular Economy Implementation: A Comprehensive Review in Context of Manufacturing Industry. Journal of Cleaner Production, vol.115, p.36–51, 2016.
  • [37] LINTON, J.D., KLASSEN, R., JAYARAMAN, V. Sustainable supply chains: An introduction. Journal of Operations Management, v.25, p.1075–1082, 2007.
  • [38] MICHAILOS, S. Process design, economic evaluation and life cycle assessment of jet fuel production from sugar cane residue. Environmental Progress and Sustainable Energy, v.37, p.1227-1235, 2018.
  • [39] MULDER, B., LA ROCCA, G., SCHUT, J., VERHAGEN, W.J.C. A Methodological Approach for the Optimisation of the Product Development Process by the Application of Design Automation. CEAS – The International Conference of the European Aerospace Societies, 2015.
  • [40] PARK, S., LEE, H., CHON, J. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution. Environmental Pollution, v.247, p.340-348, 2019.
  • [41] PILLAIN, B., et al. Social life cycle assessment framework for evaluation of potential job creation with an application in the French carbon fiber aeronautical recycling sector. International Journal of Life Cycle Assessment, 2019.
  • [42] RAJIANI, I., KOT, S. The prospective consumers of the Indonesian green aviation initiative for sustainable development in air transportation. Sustainability (Switzerland), v.10, 2018.
  • [43] RAJ, A., SRIVASTAVA, S.K. Sustainability performance assessment of an aircraft manufacturing firm. Benchmarking, v.25, p.1500-1527, 2018.
  • [44] RASSOULINEJAD-MOUSAVI, S.M., MAO, Y., ZHANG, Y. Reducing greenhouse gas emissions in Sandia methane-air flame by using a biofuel. Renewable Energy, v.128, p.313–323, 2018.
  • [45] REEFKE, H., SUNDARAM, D. Key themes and research opportunities in sustainable supply chain management – identification and evaluation. Omega, vol.66, p.195–211, 2017.
  • [46] RIBEIRO, J.S., GOMES, J.O. Proposed framework for End-Of-Life aircraft recycling. Procedia CIRP, v.26, p.311–316, 2015.
  • [47] SANTOS, C.V., LEIVA, D.R., , COSTA, F.R., GREGOLIN, J.A.R. Materials Selection for Sustainable Executive Aircraft Interiors. Materials Research, v.19, p.339-352, 2016.
  • [48] SARKER, F. et al. High-Performance Graphene-Based Natural Fiber Composites. ACS Applied Materials and Interfaces, v.10, p.34502-34512, 2018.
  • [49] SMITH, A.D., OFFODILE, O.F. Green and sustainability corporate initiatives: a case study of goods and services design. International Journal of Process Management and Benchmarking, v.6, p.273-299, 2016. SMOL, M. et al. The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. Journal of Cleaner Production, v.95, p.45–54, 2015.
  • [50] SÖĞÜT, M.Z.. Exergetic Irreversibility and Sustainability Performances for Alternative Fuels in the Micro-Turbojet Engine. International Journal of Green Energy, v.15, p.169-180, 2018.
  • [51] SOUZA, C.S.R. et al. Reuse of Uncured Carbon Fiber/Epoxy Resin Prepreg Scraps: Mechanical Behavior and Environmental Response. ACS Sustainable Chemistry and Engineering, v.7, p.2200−2206, 2019.
  • [52] SULLIVAN, J.L., LEWIS, G.M., KEOLEIAN, G.A.. Effect of mass on multimodal fuel consumption in moving people and freight in the U.S.. Transportation Research Part D: Transport and Environment, v.63, p.786-808, 2018.
  • [53] TUKKER, A.. Product Services for a Resource-efficient and Circular Economy – A Review. Journal of Cleaner Production, v.97, p.76–91, 2015.
  • [54] VACHON, S., KLASSEN, R.D. Environmental management and manufacturing performance: The role of collaboration in the supply chain. International Journal of Production Economics, v.111, p.299-315, 2008. VARSEI, M., POLYAKOVSKIY, S. Sustainable supply chain network design: A case of the wine industry in Australia. Omega, v.66, p.236-247, 2017.
  • [55] VIDAL R. et al. Life Cycle Assessment of Novel Aircraft Interior Panels Made from Renewable or Recyclable Polymers with Natural Fiber Reinforcements and Non-Halogenated Flame Retardants. Journal of Industrial Ecology, v.22, p.132-144, 2018.
  • [56] VINODH, S., RATHOD, G. Integration of ECQFD and LCA for sustainable product design. Journal of Cleaner Production, v.18, p. 833-842, 2010.
  • [57] YAZAR, I. Simulation of a High Fidelity Turboshaft Engine-Alternator Model for Turboelectric Propulsion System Design and Applications. International Journal of Turbo and Jet Engines, 2018.
  • [58] YIN, K.-S., WARD, A., DARGUSCH, P., HALOG, A.. The cost of abatement options to reduce carbon emissions from Australian international flights. International Journal of Sustainable Transportation, v.12, p.165-178, 2018.
  • [59] ZHANG, N., XIE, H. Toward green IT: Modeling sustainable production characteristics for Chinese electronic information industry, 1980–2012. Technol. Forecast. Soc. Chang., v.96, p.62–70, 2014.
  • [60] ZENG, D., FU, X., OUYANG, T. Implementing Green IT Transformation for Sustainability: A Case Study in China. Sustainability, v.10, 2018.
  • [61] ZHU, Q., GENG, Y., LAI. K. H. Circular Economy Practices among Chinese Manufacturers Varying in Environmental-oriented Supply Chain Cooperation and the Performance Implications. Journal of Environmental Management, v.91, p.1324–1331, 2010.
  • [62] ZHU, Q., SARKIS, J. Relationships Between Operational Practices and Performance Among Early Adopters of Green Supply Chain Management Practices in Chinese Manufacturing Enterprises. Journal of Operations Management, v.22, p.265-289, 2004.
Como citar:

Dias, Veruska Mazza Rodrigues; Jugend, Daniel; Razzino, Carlos; , ; "PRÁTICAS DE ECONOMIA CIRCULAR NO DESENVOLVIMENTO DE PRODUTOS AERONÁUTICOS: AÇÕES PROPOSTAS PELO MODELO RESOLVE", p. 407-421 . In: Anais do 12º Congresso Brasileiro de Inovação e Gestão de Desenvolvimento de Produto. São Paulo: Blucher, 2019.
ISSN 2357-7592, DOI 10.5151/cbgdp2019-31

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações