Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Revelando o futuro da manufatura inteligente: uma revisão de artigos científicos sobre digital twin na linha de produção e análises de otimização

Unveiling the future of smart manufacturing: a review of scientific articles on digital twin shop floor and optimization analyses

PASIANOTTO, Henrique Klesse ; NASCIMENTO JR, Laercio Alves do ; VALLE, Pablo Deivid ; SANTOS, Max Mauro Dias ; DESCHAMPS, ;

Trabalho completo:

Digital Twin Shop Floor (DTS) é uma ferramenta recente que tem chamado a atenção tanto da indústria quanto dos estudiosos, oferecendo possíveis benefícios para os sistemas de produção e logística ao construir uma réplica virtual do chão de fábrica e estabelecer uma interação entre o modelo digital e sua contraparte física. No entanto, há uma falta de artigos científicos na literatura que revisem a aplicação do DTS nas indústrias. Nesse contexto, este artigo revisa a literatura científica e analisa as otimizações propostas para encontrar melhorias aplicáveis a um gêmeo digital já existente de um grande fabricante de autopeças no Brasil. O presente trabalho também traz uma análise das tecnologias utilizadas nos artigos revisados, bem como dos métodos de modelagem e simulação. Além disso, cada artigo é discutido individualmente, focando em suas contribuições alcançáveis para o fabricante. Por fim, são delineados os trabalhos futuros relacionados à otimização do DTS pelo fabricante.

Trabalho completo:

Digital Twin Shop Floor (DTS) is a recent tool that has attracted attention from both industries and scholars, offering possible benefits to the production and logistic systems by building a virtual replica of the shop floor and establishing an interaction between the digital model and its physical counterpart. However, there is a lack of scientific articles in the literature reviewing the application of DTS on industries. In that context, this paper reviews the scientific literature and analyzes the optimizations proposed to find improvements applicable on an already existing digital twin of a large automotive parts manufacturer in Brazil. The present work also brings an analysis of technologies used in the reviewed papers, as well as modeling and simulation methods. Additionally, each paper is discussed individually, focusing on their achievable contributions to the manufacturer. Finally, the future work regarding the optimization of the DTS from the manufacturer is outlined.

Palavras-chave: ,

Palavras-chave: ,

DOI: 10.5151/simea2023-PAP92

Referências bibliográficas
  • [1] " Xin Ma, Jiangfeng Cheng, Qinglin Qi, and Fei Tao. Artificial intelligence enhanced interaction in digital twin shop-floor. volume 100, page 858 – 863, 202 doi: 10.1016/j.procir.20205.03
  • [2] URL https://www.scopus.com/inward/record.uri?eid=2-s 0-85107885361&doi=10.1016%2fj.procir.2021.05.031&partnerID= 40&md5=c084c24281618f3b26fc5411f6c3b8e
  • [3] [2] Carlos Henrique dos Santos, Renan Delgado Camurça Lima, Fabiano Leal, José Antonio de Queiroz, Pedro Paulo Balestrassi, and José Arnaldo Barra Montevechi. A decision support tool for operational planning: a digital twin using simulation and forecasting methods. Production, 30:1 – 17, 2020. doi: 10.1590/0103-65120200018.
  • [4] URL https://www.scopus.com/inward/record.uri?eid=2-s2. 0-85101094714&doi=10.1590%2f0103-6513.20200018&partnerID=40&
  • [5] md5=812bf65095976460e48d21b3a67e189 Cited by: 12; All Open
  • [6] Access, Gold Open Access, Green Open Access.
  • [7] [3] Alexander Kaiblinger and Manuel Woschank. State of the art and future directions of digital twins for production logistics: A systematic literature review. Applied Sciences, 12(2), 2022. ISSN 2076-341 doi: 10.3390/app12020669. URL https://www.mdpi.com/2076-3417/ 12/2/669.
  • [8] [4] Agustina Eunike, Kung-Jeng Wang, Jingming Chiu, and Yuling
  • [9] Hsu. Real-time resilient scheduling by digital twin technology in a flow-shop manufacturing system. volume 107, page 668 – 674, 2022. doi: 10.1016/j.procir.2022.05.043. URL https://www.scopus.com/ inward/record.uri?eid=2-s2.0-85132286450&doi=10.1016%2fj.procir. 2022.05.043&partnerID=40&md5=4631c9299ce9d9b56636d2c613a8f89a.
  • [10] Cited by: 3; All Open Access, Gold Open Access.
  • [11] [5] Fei Tao, Weiran Liu, Jianhua Liu, Xiaojun Liu, Qiang Liu, Ting Qu, Tianliang Hu, Zhinan Zhang, Feng Xiang, Wenjun Xu, Jun- Qiang Wang, Yingfeng Zhang, Zhenyu Liu, Hao Li, Jiangfeng Cheng, Qinglin Qi, Meng Zhang, He Zhang, Fangyuan Sui, and Hui Cheng. Digital twin and its potential application exploration, volume = 24, journal = Computer Integrated Manufacturing Systems, doi = 10.13196/j.cims.2018.01.001. 01 2018.
  • [12] [6] Fei Tao and Meng Zhang. Digital twin shop-floor: A new shop- floor paradigm towards smart manufacturing. IEEE Access, 5:20418– 20427, 2017. doi: 10.1109/ACCESS.2017.2756069.
  • [13] [7] Fei Tao, He Zhang, Ang Liu, and A. Y. C. Nee. Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 15 (4):2405–2415, 2019. doi: 10.1109/TII.2018.2873186.
  • [14] [8] Flavia Pires, Bilal Ahmad, Antonio Paulo Moreira, and Paulo Leitao. Digital twin based what-if simulation for energy management. page 309 – 314, 2021. doi: 10.1109/ICPS49255.2021.9468224.
  • [15] URL https://www.scopus.com/inward/record.uri?eid=2-s2. 0-85112395893&doi=10.1109%2fICPS49255.2021.9468224&partnerID=
  • [16] 40&md5=2e1195dc7eca76d78e97399cd7e9ce2a. Cited by: 8; All Open
  • [17] Access, Green Open Access.
  • [18] [9] Vladimir Kuts, Martinš Sarkans, Tauno Otto, Toivo Tähemaa, and Yevhen Bondarenko. Digital twin: Concept of hybrid programming for industrial robots – use case. volume 2B-2019, 2019. doi: 10.1115/IMECE2019-10583. URL https://www.scopus.com/inward/ record.uri?eid=2-s2.0-85078760988&doi=10.1115%2fIMECE2019-10583&
  • [19] partnerID=40&md5=b4701f42634b294598b15da65037cd74. Cited by: 17.
  • [20] [10] Alem Čolaković and Mesud Hadžialić. Internet of things (iot): A review of enabling technologies, challenges, and open research issues. Computer Networks, 144:17–39, 2018. ISSN 1389-1286. doi: https://doi.org/10.1016/j.comnet.2018.07.017. URL https:// www.sciencedirect.com/science/article/pii/S1389128618305243.
  • [21] [11] Anis Assad Neto, Elias Ribeiro da Silva, Fernando Deschamps,
  • [22] Laercio Alves do Nascimento Junior, and Edson Pinheiro de Lima. Modeling production disorder: Procedures for digital twins of flexibility-driven manufacturing systems. International Journal of Production Economics, 260, 2023. doi: 10.1016/j.ijpe.2023.108846. URL https://www.scopus.com/inward/record.uri?eid=2-s2. 0-85151011335&doi=10.1016%2fj.ijpe.2023.108846&partnerID=40& md5=5c3c0c012d0841ca9381b7357252a1bc. Cited by: 0.
  • [23] [12] Sze-jung Wu, Nagi Gebraeel, Mark A. Lawley, and Yuehwern Yih.
  • [24] A neural network integrated decision support system for condition-based optimal predictive maintenance policy. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 37(2):
  • [25] 226–236, 2007. doi: 10.1109/TSMCA.2006.886368.
  • [26] [13] Vladimir Kuts, Gianfranco E. Modoni, Tauno Otto, Marco Sacco, Toivo Tähemaa, Yevhen Bondarenko, and Ruxin Wang. Synchronizing physical factory and its digital twin throughan iiot middleware: A case study; [füüsiline tehas ja selle digitaalse kaksiku sünkroonimine tööstusliku nutistu vahevara kaudu: Juhtumi uuring]. Proceedings of the Estonian
  • [27] Academy of Sciences, 68(4):364 – 370, 2019. doi: 10.3176/proc.2019.4.03. URL https://www.scopus. com/inward/record.uri?eid=2-s2.0-85074654014&doi=10.3176%2fproc. 2019.4.03&partnerID=40&md5=d380f1445671cadd677f43e0a209c39a. Cited by: 26; All Open Access, Gold Open Access.
  • [28] [14] Aidan Fuller, Zhong Fan, Charles Day, and Chris Barlow. Digital twin: Enabling technologies, challenges and open research. IEEE Access, PP:1–1, 05 2020. doi: 10.1109/ACCESS.2020.2998358.
  • [29] [15] M. Sommer, J. Stjepandic, S. Stobrawa, and M. Von Soden. Automated generation of a digital twin of a manufacturing system by using scan and convolutional neural networks. In Advances in Transdisciplinary Engineering, volume 12, pages 363–372, 2020. URL https://www.scopus.com/record/display.uri?eid=2-s2. 0-85092798079&doi=10.3233%2fATDE200095&origin=inward&txGid= fc9dec37796349412ea310e3002cf678.
  • [30] [16] M. Sommer, J. Stjepandic, S. Stobrawa, and M. Von Soden. Improvement of factory planning by automated generation of a digital twin. In Advances in Transdisciplinary Engineering, volume 12, pages 453–462, 2020. URL https://www.scopus.com/record/display. uri?eid=2-s2.0-85092759053&doi=10.3233%2fATDE200105&origin= inward&txGid=1ed0a2928d10448d9fb4b0dbbbcab7f2.
  • [31] [17] Lilan Liu, Kai Guo, Zenggui Gao, Jiaying Li, and Jiachen Sun. Digital twin-driven adaptive scheduling for flexible job shops. Sustainability (Switzerland), 14(9), 2022. doi: 10.3390/su14095340. URL https://www.scopus.com/inward/record. uri?eid=2-s2.0-85129841365&doi=10.3390%2fsu14095340&partnerID= 40&md5=98592a2539dab97fc5dca66b077668e5. Cited by: 4; All Open Access, Gold Open Access.
  • [32] [18] Michael Grieves. Digital twin: manufacturing excellence through virtual factory replication. White paper, 1(2014):1–7, 2014.
  • [33] [19] Fei Tao, Meng Zhang, Yushan Liu, and A.Y.C. Nee. Digital twin driven prognostics and health management for complex equip- ment. CIRP Annals, 67(1):169–172, 2018. ISSN 0007-8506.
  • [34] doi: https://doi.org/10.1016/j.cirp.2018.04.055. URL https://www. sciencedirect.com/science/article/pii/S0007850618300799.
  • [35] [20] Jay Lee, Moslem Azamfar, and Behrad Bagheri. A unified digital twin framework for shop floor design in industry 4.0 manufacturing systems. Manufacturing Letters, 27:87 – 91, 2021. doi: 10.1016/j.mfglet.2021.01.005. URL https://www.scopus.com/ inward/record.uri?eid=2-s2.0-85100980468&doi=10.1016%2fj.mfglet. 2021.01.005&partnerID=40&md5=186eb8d455edddead0c951a1894d4907. Cited by: 15.
  • [36] [21] Werner Kritzinger, Matthias Karner, Georg Traar, Jan Henjes, and Wilfried Sihn. Digital twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11):1016–1022, 2018. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2018.
  • [37] 08.474. URL https://www.sciencedirect.com/science/article/pii/ S2405896318316021. 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018.
  • [38] [22] Cunbo Zhuang, Jianhua Liu, and Hui Xiong. Digital twin- based smart production management and control framework for the complex product assembly shop-floor. International Journal of Advanced Manufacturing Technology, 96(1-4): 1149 – 1163, 2018. doi: 10.1007/s00170-018-1617-6.
  • [39] URL https://www.scopus.com/inward/record.uri?eid=2-s2. 0-85041548794&doi=10.1007%2fs00170-018-1617-6&partnerID=40&
  • [40] md5=95207b340f6af35279e8aeb39aa5137e. Cited by: 352.
  • [41] [23] Khalil Tliba, Thierno M. L. Diallo, Olivia Penas, Romdhane Ben Khalifa, Noureddine Ben Yahia, and Jean-Yves Choley. Digital twin-driven dynamic scheduling of a hybrid flow shop. Journal of Intelligent Manufacturing, 2022. doi: 10.1007/s10845-022-01922-3. URL https://www.scopus.com/inward/record.uri?eid=2-s2. 0-
  • [42] 85126214952&doi=10.1007%2fs10845-022-01922-3&partnerID=40&
  • [43] md5=2c3e9e2d1c7a916da989899494ab449b. Cited by: 6.
  • [44] [24] Romão Santos, João Basto, Symone G. S. Alcalá, Enzo Frazzon, and Ame´rico Azevedo. Industrial iot integrated with simulation -a digital twin approach to support real-time decision making. Number July, page 816 – 828, 2019. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079487305&
  • [45] partnerID=40&md5=73b313993562bcdb727ab57b26729ff4. Cited by: 9.
  • [46] [25] I. Graessler and A. Poehler. Integration of a digital twin as human representation in a scheduling procedure of a cyber-physical production system. volume 2017-December, page 289 – 293, 2018. doi: 10.1109/IEEM.2017.8289898. URL https://www.scopus.com/ inward/record.uri?eid=2-s2.0-85045258714&doi=10.1109%2fIEEM. 2017.8289898&partnerID=40&md5=92d7e0001842aa8301d766f9b07b70f5. Cited by: 42.
  • [47] [26] Angelo Corallo, Vito Del Vecchio, Marianna Lezzi, and Paola Morciano. Shop floor digital twin in smart manufacturing: A systematic literature review. Sustainability (Switzerland), 13 (23), 2021. doi: 10.3390/su132312987. URL https://www. scopus.com/inward/record.uri?eid=2-s2.0-85119964111&doi=10.3390% 2fsu132312987&partnerID=40&md5=3cc38be0937c03718507d7627ca8d8cc. Cited by: 11; All Open Access, Gold Open Access.
  • [48] [27] Michael Grieves. Product lifecycle management: the new paradigm for enterprises. International Journal of Product Development - Int J Prod Dev, 2, 01 2005. doi: 10.1504/IJPD.2005.006669.
  • [49] [28] Edward Glaessgen and David Stargel. The digital twin paradigm for future nasa and u.s. air force vehicles. 04 2012. ISBN 978-1-60086- 937-2. doi: 10.2514/6.2012-1818.
  • [50] [29] Fei Tao, Jiangfeng Cheng, Qinglin Qi, Meng Zhang, He Zhang, and Fangyuan Sui. Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manu- facturing Technology, 94, 02 2018. doi: 10.1007/s00170-017-0233-1.
  • [51] [30] Qinglin Qi, Fei Tao, Tianliang Hu, Nabil Anwer, Ang Liu, Yongli Wei, Lihui Wang, and Andrew Nee. Enabling technologies and tools for digital twin. Journal of Manufacturing Systems, 58:3–21, 03 2021. doi: 10.1016/j.jmsy.2019.10.001.
  • [52] [31] Fei Tao and Qinglin Qi. New it driven service-oriented smart manufacturing: Framework and characteristics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49:81–91, 01 2019. doi: 10.1109/TSMC.2017.2723764.
  • [53] [32] Rodolfo Elias Haber Guerra, Ramon Quiza, Alberto Villalonga, Javier Arenas, and Fernando Castaño. Digital twin-based optimization for ultraprecision motion systems with backlash and friction. IEEE Access, PP:1–1, 07 2019. doi: 10.1109/ACCESS.2019.2928141."
Como citar:

PASIANOTTO, Henrique Klesse; NASCIMENTO JR, Laercio Alves do; VALLE, Pablo Deivid; SANTOS, Max Mauro Dias; DESCHAMPS, ; "Revelando o futuro da manufatura inteligente: uma revisão de artigos científicos sobre digital twin na linha de produção e análises de otimização", p. 457-475 . In: Anais do XXX Simpósio Internacional de Engenharia Automotiva . São Paulo: Blucher, 2023.
ISSN 2357-7592, DOI 10.5151/simea2023-PAP92

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações