Dezembro 2024 vol. 11 num. 2 - X Simpósio Internacional de Inovação e Tecnologia
Completo - Open Access.
SOLAR IRRADIATION FORECAST USING ARTIFICIAL NEURAL NETWORKS FOR THE CITY OF FEIRA DE SANTANA, BAHIA
SOLAR IRRADIATION FORECAST USING ARTIFICIAL NEURAL NETWORKS FOR THE CITY OF FEIRA DE SANTANA, BAHIA
Ribeiro, Daniel do Carmo Silva ; Silva Neto, Calisto Jose Da ; Silva, Luiz Henrique Santos ; Pereira, Jadiel Dos Santos ; Amaral, Jairo Cavalcanti ; Silva, Consuelo Cristina Gomes ;
Completo:
" This study presents the integration of a meteorological station in Feira de Santana, Bahia, with artificial neural networks to predict solar irradiance. The methodology includes the collection of climatic data, specifically temperature and humidity data along with solar irradiance, the implementation of artificial intelligence techniques, and the analysis of the correlation between the neural network predictions and actual solar irradiance data. The results demonstrate the effectiveness of the neural network in capturing complex patterns in meteorological data, contributing to accurate predictions of solar irradiance. The integration of the meteorological station with the ThingSpeak server enabled real-time monitoring, highlighting the importance of technology in understanding and addressing environmental and climatic challenges."
Completo:
" This study presents the integration of a meteorological station in Feira de Santana, Bahia, with artificial neural networks to predict solar irradiance. The methodology includes the collection of climatic data, specifically temperature and humidity data along with solar irradiance, the implementation of artificial intelligence techniques, and the analysis of the correlation between the neural network predictions and actual solar irradiance data. The results demonstrate the effectiveness of the neural network in capturing complex patterns in meteorological data, contributing to accurate predictions of solar irradiance. The integration of the meteorological station with the ThingSpeak server enabled real-time monitoring, highlighting the importance of technology in understanding and addressing environmental and climatic challenges."
Palavras-chave: Weather data; Weather station; Neural networks; Solar irradiation; Renewable energy,
Palavras-chave: Weather data; Weather station; Neural networks; Solar irradiation; Renewable energy,
DOI: 10.5151/siintec2024-388842
Referências bibliográficas
- [1] "1 CHRISTOFORIDIS, G. C.; LABRIDIS, D. P.; DOKOPOULOS, P. S. Inductive
- [2] interference calculation on imperfect coated pipelines due to nearby faulted parallel
- [3] transmission lines. *Electric Power Systems Research*, vol. 66, no. 2, pp. 139-148,
- [4] 2003. ISSN 0378-7796. Cited on page 1.
- [5] 2 Domingos, S. F., Monteiro, L. G., Boaventura, W. C. State of the Art for Solar
- [6] Radiation Forecasting. VIII CBENS. Fortaleza. 2020. 3 LECUN, Yann; BENGIO, Yoshua; HINTON, Geoffrey. Deep learning. *Nature*.
- [7] Nature Publishing Group, vol. 521, no. 7553, pp. 436-444, 2015.
- [8] 4 MARTINS, P. E. MP. Survey of Solar Energy Resources in Brazil Using
- [9] Geostationary Satellite – The Swera Project. *Revista Brasileira de Ensino de Física*,
- [10] vol. 26, no. 2, pp. 145-159, 2004.
- [11] 5 NEELAMEGAM, P.; AMIRTHAM, V. A. Prediction of solar radiation for solar systems
- [12] by using ANN models with different back propagation algorithms. *Journal of Applied
- [13] Research and Technology*, vol. 14, pp. 206–214, 2016.
- [14] 6 OBANDO, E.; CARVAJAL, S.; PINEDA, J. Solar Radiation Prediction Using Machine
- [15] Learning Techniques: A Review. *IEEE Latin America Transactions*, vol. 17, no. 4, pp.
- [16] 684 - 697, Apr. 2019.
- [17] 7 ROSSO, A. P.; LUDKE, M. C.; CROTTI, P.; RAMPINELLI, G. A.; MARCELINO, R.
- [18] Development of Reference Module Prototypes for Solar Radiation Measurement. In:
- [19] CONGRESSO BRASILEIRO DE ENERGIA SOLAR (CBENS), 7th, 2020, Gramado.
- [20] Proceedings [...]. Gramado, 20
- [21] 8
- [22] . YANG, D. et al. History and trends in solar irradiance and PV power forecasting: A
- [23] preliminary assessment and review using text mining. *Solar Energy*, pp. 60-101, Jul. 2018."
Como citar:
Ribeiro, Daniel do Carmo Silva; Silva Neto, Calisto Jose Da; Silva, Luiz Henrique Santos; Pereira, Jadiel Dos Santos; Amaral, Jairo Cavalcanti; Silva, Consuelo Cristina Gomes; "SOLAR IRRADIATION FORECAST USING ARTIFICIAL NEURAL NETWORKS FOR THE CITY OF FEIRA DE SANTANA, BAHIA", p. 741-747 . In: .
São Paulo: Blucher,
2024.
ISSN 2357-7592,
DOI 10.5151/siintec2024-388842
últimos 30 dias | último ano | desde a publicação
downloads
visualizações
indexações