Article - Open Access.

Idioma principal | Segundo idioma

SUPORTE DE TECNOLOGIAS DA INDÚSTRIA 4.0 PARA ASSEGURAR A SUSTENTABILIDADE NO PROCESSO DE DESENVOLVIMENTO DE PRODUTOS

-

Ferraz, Natália ; Toledo, José Carlos de ; , ;

Article:

A transição para indústria 4.0 é um desafio para muitas empresas. Muitos processos tendem a ser otimizados com as tecnologias emergentes da indústria 4.0, que poderão impactar na sustentabilidade de muitos processos industriais. O presente artigo mostra, por meio de uma revisão da literatura, como algumas tecnologias habilitadoras da indústria 4.0 podem assegurar a sustentabilidade no processo de desenvolvimento de produtos. Observou-se que as tecnologias abordadas neste estudo afetam de modo/intensidade diferente as etapas do PDP. As etapas de produção e manutenção são mais fortemente impactadas, do ponto de vista da sustentabilidade, pelas 3 tecnologias. As tecnologias com foco em tratamento e acesso a grandes volumes de dados (CC e BD) afetam mais intensamente nas etapas iniciais do PDP. Este, trata-se de um tema que merece ser explorado em futuras pesquisas.

Article:

-

Palavras-chave: Indústria 4.0; Tecnologias da indústria 4.0; Processo de desenvolvimento de produtos; sustentabilidade,

Palavras-chave: -,

DOI: 10.5151/cbgdp2019-71

Referências bibliográficas
  • [1] AHMAD, Shamraiz et al. Sustainable product design and development: A review of tools, applications and research prospects. Resources, Conservation and Recycling, v. 132, p. 49-61, 2018. ALPTEKIN, S. Emre; ALPTEKIN, Gülfem Isiklar. A Fuzzy Quality Function Deployment Approach for Differentiating Cloud Products. International Journal of Computational Intelligence Systems, v. 11, n. 1, p. 1041-1055, 2018. BUCHERT, Tom et al. Target-driven selection and scheduling of methods for sustainable product development. Journal of cleaner production, v. 161, p. 403-421, 2017. CERDAS, Felipe et al. Life cycle assessment of 3D printed products in a distributed manufacturing system. Journal of Industrial Ecology, v. 21, n. S1, p. S80-S93, 2017. CHEN, Danfang et al. Direct digital manufacturing: definition, evolution, and sustainability implications. Journal of Cleaner Production, v. 107, p. 615-625, 2015 COOPER, Robert Gravlin; EDGETT, Scott J.; KLEINSCHMIDT, Elko J. Portfolio management for new products. 200 COTTELEER, Mark; JOYCE, Jim. 3D opportunity: Additive manufacturing paths to performance, innovation, and growth. Deloitte Review, v. 14, p. 5-19, 2014. DE PAULA, Jefferson Olegário; MELLO, Carlos Henrique Pereira. Seleção de um modelo de referência de PDP para uma empresa de autopeças através de um método de auxílio à decisão por múltiplos critérios. Production, v. 23, n. 1, p. 144-156, 2013. FORD, Simon; DESPEISSE, Mélanie. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of Cleaner Production, v. 137, p. 1573-1587, 2016. GEBLER, Malte; UITERKAMP, Anton JM Schoot; VISSER, Cindy. A global sustainability perspective on 3D printing technologies. Energy Policy, v. 74, p. 158-167, 2014. GMELIN, Harald; SEURING, Stefan. Determinants of a sustainable new product development. Journal of Cleaner production, v. 69, p. 1-9, 2014. HUANG, Samuel H. et al. Additive manufacturing and its societal impact: a literature review. The International Journal of Advanced Manufacturing Technology, v. 67, n. 5-8, p. 1191-1203, 2013. LIAO, Yongxin et al. Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal. International journal of production research, v. 55, n. 12, p. 3609-3629, 2017. MA, Junfeng et al. An exploratory investigation of additively manufactured product life cycle sustainability assessment. Journal of Cleaner Production, v. 192, p. 55-70, 2018.
  • [2] MANI, Mahesh; LYONS, Kevin W.; GUPTA, S. K. Sustainability characterization for additive manufacturing. Journal of research of the National Institute of Standards and Technology, v. 119, p. 419, 2014. NAVARRO, T. G. et al. Ecodesign function and form–classification of ecodesign tools according to their functional aspects. In: DS 35: Proceedings ICED 05, the 15th International Conference on Engineering Design, Melbourne, Australia, 15.-18.08. 2005. 2005. p. 605-606 (exec. Summ.), full paper no. DS35_346. 34. OESTERREICH, Thuy Duong; TEUTEBERG, Frank. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry, v. 83, p. 121-139, 2016. ROZENFELD, Henrique et al. Gestão de desenvolvimento de produtos: uma referência para a melhoria do processo. 2006. SCHÖGGL, Josef-Peter; BAUMGARTNER, Rupert J.; HOFER, Dietmar. Improving sustainability performance in early phases of product design: A checklist for sustainable product development tested in the automotive industry. Journal of Cleaner Production, v. 140, p. 1602-1617, 2017. Shi, J., Li, Q., Li, H., Li, S., Zhang, J., Shi, Y. Eco-design for recycled products: rejuvenating mullite from coal fly ash. Resour. Conserv. Recycl. 124, 67–73. 2017. SINGH, Akshit et al. Big data cloud computing framework for low carbon supplier selection in the beef supply chain. Journal of cleaner production, v. 202, p. 139-149, 2018. WANG, Zhen et al. Composite sustainable manufacturing practice and performance framework: Chinese auto-parts suppliers׳ perspective. International Journal of Production Economics, v. 170, p. 219-233, 2015. WEYER, Stephan et al. Towards Industry 4.0-Standardization as the crucial challenge for highly modular, multi-vendor production systems. Ifac-Papersonline, v. 48, n. 3, p. 579-584, 2015. WU, Yung-Hung; HO, Chao Chung. Integration of green quality function deployment and fuzzy theory: a case study on green mobile phone design. Journal of Cleaner production, v. 108, p. 271-280, 2015. YIN, Yuanyuan; QIN, Sheng-feng. A smart performance measurement approach for collaborative design in Industry 4.0. Advances in Mechanical Engineering, v. 11, n. 1, p. 1687814018822570, 2019. YOUNESI, Mojdeh; ROGHANIAN, Emad. A framework for sustainable product design: a hybrid fuzzy approach based on quality function deployment for environment. Journal of Cleaner Production, v. 108, p. 385-394, 2015.
Como citar:

Ferraz, Natália; Toledo, José Carlos de; , ; "SUPORTE DE TECNOLOGIAS DA INDÚSTRIA 4.0 PARA ASSEGURAR A SUSTENTABILIDADE NO PROCESSO DE DESENVOLVIMENTO DE PRODUTOS", p. 971-984 . In: Anais do 12º Congresso Brasileiro de Inovação e Gestão de Desenvolvimento de Produto. São Paulo: Blucher, 2019.
ISSN 2357-7592, DOI 10.5151/cbgdp2019-71

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações