Artigo - Open Access.

Idioma principal | Segundo idioma

Thermal Comfort Clustering; Climate Classification in Colombia

-

Hudson, Roland ; Velasco, Rodrigo ;

Artigo:

Our goal is to develop a climatic classification system that extends understanding of human comfort and guides the design of buildings to provide greater thermal comfort to occupants. We propose that using k-means clustering with multivariate climate data a classification system can be defined to objectively represent comfort zones in the tropics. Our study focuses on Colombia, but the approach extends to other countries located in the tropics.

Artigo:

-

Palavras-chave: Human comfort; climate classification; clustering,

Palavras-chave: -,

DOI: 10.5151/sigradi2018-1676

Referências bibliográficas
  • [1] Allaby, M. (2010). Climate classification. In A Dictionary of Ecology. Oxford University Press. Retrieved from http://www.oxfordreference.com.liverpool.idm.oclc.org/view/10.1093/acref/9780199567669.000001/acref-9780199567669-e-1137 ASHRAE. (2013). 2013 ASHRAE Handbook: Fundamentals. ASHRAE. https://doi.org/10.1163/ej.9789004155947.i-937.23 Bharath, R., & Srinivas, V. V. (2015). Delineation of homogeneous hydrometeorological regions using wavelet-based global fuzzy cluster analysis. International Journal of Climatology, 35(15), 4707–4727. https://doi.org/10.1002/joc.4318 Bostock, M. (2017a). D3.js - Data-Driven Documents. Retrieved 28 June 2018, from https://d3js.org/ Bostock, M. (2017b). TopoJSON. Retrieved 3 May 2017, from https://github.com/topojson/topojson Bravo, G., & González, E. (2013). Thermal comfort in naturally ventilated spaces and under indirect evaporative passive cooling conditions in hot–humid climate. Energy and Buildings, (63), 79–86. Retrieved from http://www.sciencedirect.com/science/article/pii/S0378778813001758 Cgiar-csi.org. (2012). CRU-TS v3.10.01 Historic Climate Database for GIS | CGIAR-CSI. Retrieved 5 November 2017, from http://www.cgiar-csi.org/data/uea-cru-ts-v3-10-01-historic-climate-database Clima-colombia.org. (2018). Averaged Gridded climate data 2000 to 2009 k-means clustering study: 3D data points {temp, rh, wind}. Retrieved 16 September 2018, from http://www.clima-colombia.org/tools/kmeans/monthly3d/ Fovell, R. G., & Fovell, M. Y. C. (1993). Climate zones of the conterminous United States defined using cluster analysis. Journal of Climate. https://doi.org/10.1175/1520-0442(1993)006<2103:CZOTCU>2.0.CO;2 Givoni, B. (Barukh). (1981). Man, climate and architecture. Van Nostrand Reinhold. González, O. (1998). Metodología para el Calculo del Confort Climático en Colombia: NOTA TECNICA DEL IDEAM. Bogota. Retrieved from http://documentacion.ideam.gov.co/openbiblio/bvirtual/007574/Metodologiaconfort Janert, P. (2010). Data Analysis with Open Source Tools. A hands-on guide for programmers and data scientists. Retrieved from http://books.google.co.kr/books?id=mTXnXCLXJYgC&printsec=frontcover&dq=data+analysis+with+open+source+tools&hl=&cd=1&source=gbs_api Jarvis, A., Reuter, H. I., A., N., & Guevara, E. (n.d.). Hole-filled SRTM for the globe Version 4, Available at: CGIAR-CSI SRTM 90m Database. Retrieved 5 November 2017, from http://srtm.csi.cgiar.org Jendritzky, G., de Dear, R., & Havenith, G. (2012). UTCI-Why another thermal index? International Journal of Biometeorology, 56(3), 421–428. https://doi.org/10.1007/s00484-011-0513-7 Jones, P., & Harris, I. (2008). Climatic Research Unit (CRU) time-series datasets of variations in climate with variations in other phenomena. Retrieved 5 November 2017, from http://catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d Olgyay, V., & Olgyay, A. (2015). Design With Climate: Bioclimatic Approach to Architectural Regionalism. Princeton University Press. Rhee, J., Im, J., Carbone, G. J., & Jensen, J. R. (2008). Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas. Remote Sensing of Environment, 112(6), 3099–311 https://doi.org/10.1016/j.rse.2008.03.001 Steadman, R. G. (1994). Norms of apparent temperature in Australia. Australian Meteorological Magazine. Toe, D. H. C., & Kubota, T. (2013). Development of an adaptive thermal comfort equation for naturally ventilated buildings in hot-humid climates using ASHRAE RP-884 database. Frontiers of Architectural Research, 2(3), 278–29 https://doi.org/10.1016/j.foar.2013.06.003 Unidata. (2012). NetCDF-Java library and TDS version 4.6.9. Boulder. CO: UCAR/Unidata. https://doi.org/http://doi.org/10.5065/D6RN35XM Wentz, F., Scott, J., Hoffman, R., Leidner, M., Atlas, R., & Ardizzone, J. (2015). Remote Sensing Systems Cross-Calibrated Multi-Platform (CCMP) 6-hourly ocean vector wind analysis product on 0.25 deg grid, Version 2.0, [subset: CCMP V2.0 Level-3.5]. Retrieved 5 November 2017, from www.remss.com/measurements/ccmp Zscheischler, J., Mahecha, M. D., & Harmeling, S. (2012). Climate classifications: The value of unsupervised clustering. In Procedia Computer Science (Vol. 9, pp. 897–906). https://doi.org/10.1016/j.procs.2012.04.096
Como citar:

Hudson, Roland; Velasco, Rodrigo; "Thermal Comfort Clustering; Climate Classification in Colombia", p. 590-595 . In: . São Paulo: Blucher, 2018.
ISSN 2318-6968, DOI 10.5151/sigradi2018-1676

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações