Fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química
Artigo - Open Access.
THERMODYNAMIC ANALYSIS OF AUTOTHERMAL REFORMING OF METHANE VIA ENTROPY MAXIMIZATION: HYDROGEN PRODUCTION
SOUZA, T. L. de ; ROSSI, C. C. R. S. ; ALONSO, C. G. ; GUIRARDELLO, R. ; CABRAL, V. F. ; FERNANDES-MACHADO, N. R. C. ; SPECCHIA, S. ; ZABALOY, M. S. ; CARDOZO-FILHO, L. ;
Artigo:
In this work a thermodynamic analysis of the autothermal reforming (ATR) of methane was performed. Equilibrium calculations employing entropy maximization were performed in a wide range of oxygen to methane mole ratio (O/M), steam to methane ratio (S/M), inlet temperature (IT), and system pressure (P). The main calculated parameters were hydrogen yield, carbon monoxide formation, methane conversion, coke formation, and equilibrium temperature. Further, the optimum operating oxygen to methane feed ratio that maximizes hydrogen production, at P=1 bar, has been calculated. The nonlinear programming problem applied to the simultaneous chemical and phase equilibrium calculation was implemented in GAMS
Artigo:
Palavras-chave:
DOI: 10.5151/chemeng-cobeq2014-1420-19385-160013
Referências bibliográficas
- [1] Adhikari, S.; Fernando, S.; Gwaltney, S. R.; To, S. D. F.; Bricka, R. M.; Steele, P. H. et al. A thermodynamic analysis of hydrogen production by steam reforming of glycerol. Int. J. Hydrogen Energ.v. 32, p. 2875-80, 2007.
- [2] Akbari, M. H.; Ardakani, A. H. S.; Tadbir, M. A. A microreactor modeling, analysis and optimization for methane autothermal reforming in fuel cell applications. Chem. Eng. J., v. 166, p. 1116-25, 2011.
- [3] Ayabe, S. ; Omoto, H.; Utaka, T.; Kikuchi, R.; Sasaki, K.; Teraoka, Y. et al. Catalytic autothermal reforming of methane and propane over supported metal catalysts. Appl. Catal. A: Gen., v. 241, p. 261-9, 200
- [4] Castier, M. Solution of the isochoric-isoenergetic flash problem by direct entropy maximization. Fluid Phase Equilibr., v. 276, p. 7-17, 2009.
- [5] Chang, H. F.; Pai, W. J.; Chen, Y. J.; Lin, W. H. Autothermal reforming of methane for producing high-purity hydrogen in a Pd/Ag membrane reactor. Int. J. Hydrogen Energ., v. 35, p. 12986-92, 2010.
- [6] Área temática: Engenharia das Separações e Termodinâmica 12Chen, W. H.; Lin, M. R.; Lu, J. J.; Chao, Y.; Leu, T. S. Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction. Int. J. Hydrogen Energ., v. 35, p. 11787-97, 2010.
- [7] Dantas, S. C.; Escritori, J. C.; Soares, R. R.; Hori, C. E. Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane. Chem. Eng. J., v. 156, p. 380-7, 2010.
- [8] Dias, J. A. C., Assaf, J. M. Autothermal reforming of methane over Ni/γ-Al2O3 catalysts: the enhancement effect of small quantities of noble metals. J. Power Sources, v. 130, p. 106-10, 2004.
- [9] Escritori, J. C.; Dantas, S. C.; Soares, R. R.; Hori, C. E. Methane autothermal reforming nickel-ceria-zirconia based catalysts. Catal. Commun., v. 10, p. 1090-4, 200
- [10] Freitas, A. C. D.; Guirardello, R. Oxidative reforming of methane for hydrogen and syntesisgás production: Thermodynamic equilibrium analysis. J. Nat. Gas Chem., v. 21, p. 571-80, 2012.
- [11] Hagh, B. F. Stoichiometric analysis of autothermal fuel processing. J. Power Sources, v. 130, p. 85-94, 2004.
- [12] Halabi, M. H.; Croon, M. H. J. M.; van der Schaaf, J. Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer. Chem. Eng. J., v. 137, p. 568-78, 2008.
- [13] Hoang, D. L.; Chan, S. H.; Ding, O. L. Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support. J. Power Sources, v. 159, p. 1248-57, 2006.
- [14] International Energy Agency. World Energy Outlook 2012, London, 2012.
- [15] Li, Y.; Wang, Y.; Zhang, X.; Mi, Z. Thermodynamic analysis of autothermal steam and CO2 reforming of methane. Int. J. Hydrogen Energ., v. 33, p. 2507-14, 2008.
- [16] Liu, K.; Song. C.; Subramani, V. Hydrogen and Syngas Production and Purification Technologies. New Jersey: John Wiley Andamp; Sons; 2010.
- [17] Liu, S.; Xiong, G.; Dong, H.; Yang, W. Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/γ-Al2O3 catalyst. Appl. Catal. A: Gen., v. 202, p. 141-6, 2000.
- [18] Liu, Z. W.; Jun, K. W.; Roh, H. S.; Park, S. E. Hydrogen production for fuel cells through methane reforming at low temperatures. J. Power Sources, v. 111, p. 283-7, 2002.
- [19] Petrachi, G. A.; Negro, G.; Specchia, S.; Saracco, G.; Maffettone, P. L.; Specchia, V. Combining catalytic combustion and steam reforming in an innovative multifunctional reactor for on-board hydrogen production from middle distillates. Ind. Eng. Chem. Res., v. 44, p. 9422-30, 2005.
- [20] Rabe, S.; Truong, T. B.; Vogel, F. Catalytic autothermal reforming of methane: Performance of a kW scale reformer using pure oxygen as oxidant. Appl. Catal. A: Gen., v. 318, p. 54-62, 2007.
- [21] Reese, M. A.; Turn, S. Q.; Cui, H. Kinetic modeling of high pressure autothermal reforming. J. Power Sources, v. 195, p. 553-8, 2010.
- [22] Área temática: Engenharia das Separações e Termodinâmica 13Rossi, C. C. R. S.; Berezuk, M. E.; Cardozo-Filho, L.; Guirardello, R. Simultaneous calculation of chemical and phase equilibria using convexity analysis. Comput. Chem. Eng., v. 35, p. 1226-37, 2011.
- [23] Ruiz, J. A. C.; Passos, F. B.; Bueno, J. M. C.; Souza-Aguiar, E. F.; Mattos, L. V.; Noronha, F. B. Syngas production by autothermal reforming of methane on supported platinum catalysts. Appl. Catal. A: Gen., v. 334, p. 259-267, 2008.
- [24] Santos, D. C. R. M.; Madeira, L.; Passos, F. B. The effect of the addition of Y2O3 to Ni/α-Al2O3 catalysts on the autothermal reforming of methane. Catal. Today, v. 149, p. 401-6, 2010.
- [25] Simeone, M.; Salemme, L.; Allouis, C. Reactor temperature profile during autothermal methane reforming on Rh/Al2O3 catalyst by IR imaging. Int. J. Hydrogen Energ., v. 33, p. 4798-808, 2008.
- [26] Souza, A. E. A. M.; Maciel, L. J. L.; Filho, M. L.; Abreu, C. A. M. Catalytic activity evaluation for hydrogen production via autothermal reforming of methane. Catal. Today, v. 149, p. 413-7, 2010.
- [27] Souza, M. M. V. M.; Schmal, M. Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl. Catal. A: Gen., v. 281, p. 19-24, 2005.
- [28] Specchia, S.; Francia, C.; Spinelli, P. Polymer Electrolyte Membrane Fuel Cells. In: Liu RS, Zhang L, Sun X, Liu H, Zhang J. Electrochemical Technologies for Energy Storage and Conversion, Germany. Weinheim: Wiley-VHC Verlag GmbH Andamp; Co., KGaA; p. 601-70, 2011.
- [29] Specchia, S.; Negro, G.; Saracco, G.; Specchia, V. Fuel processor based on syngas production via short-contact-time catalytic-partial-oxidation reactors. Appl. Catal. B: Environ., v. 70, p. 525-31, 2007.
- [30] Takeguchi, T.; Furukawa, S. N.; Inoue, M.; Koichi, E. Autothermal reforming of methane over Ni catalyst supported over CaO-CeO2-ZrO2 solid solution. Appl. Catal. A: Gen., v. 240, p. 223-33, 2003.
- [31] Vagia, E. C.; Lemonidou, A. A. Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction. Int. J. Hydrogen Energ., v. 33, p. 2489-500, 2008.
- [32] Wang, H.; Wang, X.; Li, M.; Li, S.; Wang, S.; Ma, X. Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. Int. J. Hydrogen Energ., v. 34, p. 5683-90, 2009.
Como citar:
SOUZA, T. L. de; ROSSI, C. C. R. S.; ALONSO, C. G.; GUIRARDELLO, R.; CABRAL, V. F.; FERNANDES-MACHADO, N. R. C.; SPECCHIA, S.; ZABALOY, M. S.; CARDOZO-FILHO, L.; "THERMODYNAMIC ANALYSIS OF AUTOTHERMAL REFORMING OF METHANE VIA ENTROPY MAXIMIZATION: HYDROGEN PRODUCTION", p. 15633-15646 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2].
São Paulo: Blucher,
2015.
ISSN 2359-1757,
DOI 10.5151/chemeng-cobeq2014-1420-19385-160013
últimos 30 dias | último ano | desde a publicação
downloads
visualizações
indexações