Fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal

Understanding the active copper sites of Cu/ZrO2 catalyst applied to direct conversion of ethanol to ethyl acetate and hydrogen

SATO, A. G. ; VOLANTI, D. P. ; NICÁCIO, J. V. ; LONGO, E. ; BUENO, J. M. C. ;

Artigo:

The origin and influence of active sites on supported copper catalysts, and their catalytic properties for ethanol conversion, were investigated using Cu/SiO2, Cu2O/SiO2, and Cu/ZrO2. Diffuse reflectance infrared Fourier transform spectroscopy of adsorbed CO revealed that Cu

Artigo:

Palavras-chave:

DOI: 10.5151/chemeng-cobeq2014-1878-17069-136382

Referências bibliográficas
  • [1] BACHILLER-BAEZA, B.; RODRIGUEZ-RAMOS, I.; GUERRERO-RUIZ, A. Interaction of Carbon Dioxide with the Surface of Zirconia Polymorphs. Langmuir, v. 14, p. 3556-3564, 1998.
  • [2] BIANCHI, D. et al. Intermediate species on zirconia supported methanol aerogel catalysts: III. Adsorption of carbon monoxide on copper containing solids. Appl. Catal. A: Gen., v. 112, p. 57-73, 1994.
  • [3] CERRATO, G. et al. A surface study of monoclinic zirconia (m-ZrO2). Surf. Sci., v. 377-379, p. 50-55, 1997.
  • [4] CHANG, F.-W.; KUO, W.-Y.; LEE, K.-C. Dehydrogenation of ethanol over copper catalysts on rice husk ash prepared by incipient wetness impregnation. Appl. Catal. A: Gen., v. 246, n. 2, p. 253-264, 2003.
  • [5] CHEN, Y.-W.; HO, J.-J. Dehydrogenation of Ethanol on a 2Ru/ZrO2(111) Surface: Density Functional Computations. J. Phys. Chem. C, v. 113, p. 6132 - 6139, 2009.
  • [6] COSIMO, J. I. D. et al. Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides. J. Catal., v. 178, p. 499-510, 1998.
  • [7] DANDEKAR, A.; VANNICE, M. A. Determination of the Dispersion and Surface Oxidation States of Supported Cu Catalysts. J. Catal., v. 178, p. 621-639, 1998.
  • [8] DURAN, R. M. Thesis: Desidroacoplamento do etanol para acetato de etila sobre catalisadores de cobre suportados. 2000. 135 (Doutorado). Departamento de Engenharia Química, Universidade Federal de São Carlos - UFSCar, São Carlos. GASPAR, A. B. et al. The one-pot ethyl acetate syntheses: The role of the support in the oxidative and the dehydrogenative routes. Appl. Catal. A: Gen., v. 380, p. 113-117, 2010.
  • [9] HADJIIVANOV, K.; KNOZINGER, H. FTIR study of CO and NO adsorption and coadsorption on a Cu/SiO2 catalyst: Probing the oxidation state of copper. Phys. Chem. Chem. Phys., v. 3, p. 1132-1137, 2001.
  • [10] HERTL, W. Surface chemistry of zirconia polymorphs. Langmuir, v. 5, p. 96-100, 1989.
  • [11] Área temática: Engenharia de Reações Químicas e Catálise 7 8 INUI, K.; KURABAYASHI, T.; SATO, S. Direct Synthesis of Ethyl Acetate from Ethanol Carried Out under Pressure. J. Catal., v. 212, p. 207-215, 2002.
  • [12] INUI, K. et al. Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst. J. Mol. Catal. A: Chem., v. 216, p. 147-156, 2004.
  • [13] IWASA, N.; TAKEZAWA, N. Reforming of Ethanol–Dehydrogenation to Ethyl Acetate and Steam Reforming to Acetic Acid over Copper-Based Catalysts. Bull. Chem. Soc. Jpn., v. 64, p. 2619-2623, 1991.
  • [14] JUNG, K. T.; BELL, A. T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia. J. Mol. Catal. A: Chem., v. 163, p. 27-42, 2000.
  • [15] KIM, J. Y. et al. Reduction of CuO and Cu2O with H2: H Embedding and Kinetic Effects in the Formation of Suboxides. J. Am. Chem. Soc., v. 125, n. 35, p. 10684-10692, 2003.
  • [16] KNAPP, R. et al. Water-gas shift catalysts based on ionic liquid mediated supported Cu nanoparticles. J. Catal., v. 276, p. 280-291, 2010.
  • [17] MANRÍQUEZ, M. E. et al. Preparation of TiO2–ZrO2 mixed oxides with controlled acid–basic properties. J. Mol. Catal. A: Gen., v. 220, p. 229-237, 2004.
  • [18] MILUSHEV, A.; HADJIIVANOV, K. FTIR study of CO and NO adsorption and co-adsorption on Cu/silicalite-1. Phys. Chem. Chem. Phys., v. 3, n. 23, p. 5337-5341, 2001.
  • [19] POKROVSKI, K.; JUNG, K. T.; BELL, A. T. Investigation of CO and CO2 Adsorption on Tetragonal and Monoclinic Zirconia. Langmuir, v. 17, p. 4297-4303, 2001.
  • [20] RUPPERT, A. M.; WEINBERG, K.; PALKOVITS, R. Hydrogenolysis Goes Bio: From Carbohydrates and Sugar Alcohols to Platform Chemicals. Angew. Chem. Int. Ed., v. 51, n. 11, p. 2564-2601, 2012.
  • [21] SAIB, A. M. et al. Preparation and characterisation of spherical Co/SiO2 model catalysts with well-defined nano-sized cobalt crystallites and a comparison of their stability against oxidation with water. J. Catal., v. 239, n. 2, p. 326-339, 2006.
  • [22] SATO, A. G. et al. Site-selective ethanol conversion over supported copper catalysts. Catal. Commun., v. 26, p. 122-126, 2012.
  • [23] VAN STEEN, E. et al. Stability of Nanocrystals:  Thermodynamic Analysis of Oxidation and Re-reduction of Cobalt in Water/Hydrogen Mixtures. J. Phys. Chem. B, v. 109, n. 8, p. 3575-3577, 2005.
  • [24] VOLANTI, D. P. et al. Insight into Cu-Based Catalysts: Microwave-Assisted Morphosynthesis, in Situ Reduction Studies and the Dehydrogenation of Ethanol. ChemCatChem, v. 3, p. 839-843, 2011.
  • [25] WANG, L. et al. Direct transformation of ethanol to ethyl acetate on Cu/ZrO2 catalyst. Reac. Kinet. Mech. Cat., v. 101, p. 365-375, 2010.
  • [26] YEE, A.; MORRISON, S. J.; IDRISS, H. The reactions of ethanol over M/CeO2 catalysts: Evidence of carbon-carbon bond dissociation at low temperatures over Rh/CeO2. Catal. Today, v. 63, p. 327-335, 2000.
Como citar:

SATO, A. G.; VOLANTI, D. P.; NICÁCIO, J. V.; LONGO, E.; BUENO, J. M. C.; "Understanding the active copper sites of Cu/ZrO2 catalyst applied to direct conversion of ethanol to ethyl acetate and hydrogen", p. 10928-10935 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1878-17069-136382

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações